Про наши гаджеты. Понятные инструкции для всех

Солнечная радиация и её влияние на организм человека и климат. Воздействие солнечной радиации на человека

Солнечная радиация

Со́лнечная радиа́ция

электромагнитное излучение, исходящее от Солнца и поступающее в земную атмосферу. Длины волн солнечной радиации сосредоточены в диапазоне от 0,17 до 4 мкм с макс. на волне 0,475 мкм. Ок. 48 % энергии солнечного излучения приходится на видимую часть спектра (дл. волны от 0,4 до 0,76 мкм), 45 % – на инфракрасную (более 0,76, мкм), и 7 % – на ультрафиолетовую (менее 0,4 мкм). Солнечная радиация – осн. источник энергии процессов в атмосфере, океане, биосфере и т. д. Она измеряется в единицах энергии на единицу площади в единицу времени, напр. Вт/м². Солнечная радиация на верхней границе атмосферы на ср. расстоянии Земли от Солнца называется солнечной постоянной и составляет ок. 1382 Вт/м². Проходя сквозь земную атмосферу, солнечная радиация меняется по интенсивности и спектральному составу вследствие поглощения и рассеяния на частицах воздуха, газовых примесей и аэрозоля. У поверхности Земли спектр солнечного излучения ограничен 0,29–2,0 мкм, а интенсивность существенно снижена в зависимости от содержания примесей, высоты над уровнем моря и облачности. До земной поверхности доходит прямая радиация, ослабленная при прохождении сквозь атмосферу, а также рассеянная, образовавшаяся при рассеянии прямой в атмосфере. Часть прямой солнечной радиации отражается от земной поверхности и облаков и уходит в космос; рассеянная радиация также частично уходит в космос. Остальная солнечная радиация в осн. переходит в тепло, нагревая земную поверхность и частично воздух. Солнечная радиация, т. обр., представляет собой одну из осн. составляющих радиационного баланса.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


Смотреть что такое "солнечная радиация" в других словарях:

    Электромагнитное и корпускулярное излучения Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Большой Энциклопедический словарь

    солнечная радиация - Полный поток электромагнитной радиации, излучаемой Солнцем и попадающий на Землю … Словарь по географии

    У этого термина существуют и другие значения, см. Радиация (значения). В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомн … Википедия

    Все процессы на поверхности земного шара, каковы бы они ни были, имеют своим источником солнечную энергию. Изучаются ли процессы чисто механические, процессы химические в воздухе, воде, почве, процессы ли физиологические или какие бы то ни было… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Электромагнитное и корпускулярное излучение Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Энциклопедический словарь

    солнечная радиация - Saulės spinduliuotė statusas T sritis fizika atitikmenys: angl. solar radiation vok. Sonnenstrahlung, f rus. излучение Солнца, n; солнечная радиация, f; солнечное излучение, n pranc. rayonnement solaire, m … Fizikos terminų žodynas

    солнечная радиация - Saulės spinduliuotė statusas T sritis ekologija ir aplinkotyra apibrėžtis Saulės atmosferos elektromagnetinė (infraraudonoji 0,76 nm sudaro 45 %, matomoji 0,38–0,76 nm – 48 %, ultravioletinė 0,38 nm – 7 %) šviesos, radijo bangų, gama kvantų ir… … Ekologijos terminų aiškinamasis žodynas

    Излучение Солнца электромагнитной и корпускулярной природы. С. р. основной источник энергии для большинства процессов, происходящих на Земле. Корпускулярная С. р. состоит в основном из протонов, обладающих около Земли скоростями 300 1500… … Большая советская энциклопедия

    Эл. магн. и корпускулярное излучение Солнца. Эл. магн. излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетич. максимум приходится на видимую часть спектра. Корпускулярная составляющая С. р. состоит гл. обр. из… … Естествознание. Энциклопедический словарь

    прямая солнечная радиация - Солнечная радиация, поступающая непосредственно от солнечного диска … Словарь по географии

Книги

  • Солнечная радиация и климат Земли , Федоров Валерий Михайлович. В книге приводятся результаты исследований вариаций инсоляции Земли, связанных с небесно-механическими процессами. Анализируются низкочастотные и высокочастотные изменения солярного климата…

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).



Добавить свою цену в базу

Комментарий

Солнце (астр. ☉) – единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Внутреннее строение Солнца

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

Что такое конвекция?

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Излучение Солнца

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Виды излучения

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Интенсивность солнечного излучения

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).

На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Солнечная энергия на поверхности Земли

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Протуберанец на поверхности

Излучение Солнца, которое известно как солнечный свет, представляет собой смесь электромагнитных волн, от инфракрасных (ИК) до ультрафиолетовых лучей (UV). Оно включает в себя видимый свет, который находится между ИК и УФ в электромагнитном спектре.

Скорость распространения электромагнитных волн

Все электромагнитные волны (ЭМ) распространяются со скоростью приблизительно 3,0х10*8 м/с в вакууме. Пространство не является идеальным вакуумом, оно, на самом деле, содержит частицы в низкой концентрации, электромагнитные волны, нейтрино и магнитные поля. Поскольку, среднее расстояние между Землей и Солнцем более 149,6 млн. км, то требуется около 8 минут, чтобы излучение добралось до Земли. Солнце светит не только в ИК, видимом и УФ диапазоне. В основном, оно выделяет гамма-лучи высокой энергии.

Однако, фотоны гамма-излучения проходят длинный путь до поверхности, они постоянно поглощаются солнечной плазмой и повторно излучаются с изменением своей частоты.

К тому времени, как они добираются до поверхности, фотоны гамма лучей представляют собой ИК, видимый и УФ спектры. Инфракрасное излучение это тепло которое мы ощущаем. Без него и видимого света, жизнь на Земле была бы невозможна. Во время солнечных вспышек, оно также испускает рентгеновские лучи. Когда электромагнитное излучение Солнца достигает атмосферы Земли, часть его поглощается, в то время, как остальное долетает до поверхности Земли.

В частности, УФ излучение поглощается озоновым слоем и повторно излучается в виде тепла, что приводит к нагреву стратосферы.

Солнце – источник тепла и света, дарящий силы и здоровье. Однако не всегда его воздействие является положительным. Нехватка энергии или ее переизбыток могут расстроить естественные процессы жизнедеятельности и спровоцировать различные проблемы. Многие уверены, что загорелая кожа выглядит намного красивее, чем бледная, однако если долгое время провести под прямыми лучами, можно получить сильный ожог. Солнечная радиация – это поток поступающей энергии, распространяющийся в виде электромагнитных волн, проходящих через атмосферу . Измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м 2). Зная, как влияет солнце на человека, можно предотвратить его отрицательное воздействие.

Что представляет собой солнечная радиация

О Солнце и его энергии написано множество книг. Солнце является главным источником энергии всех физико-географических явлений на Земле . Одна двухмиллиардная доля света проникает в верхние слои атмосферы планеты, большая же часть оседает в мировом пространстве.

Лучи света – первоисточники других видов энергии. Попадая на поверхность земли и в воду, они формируются в тепло, воздействуют на климатические особенности и погоду.

Степень воздействия световых лучей на человека зависит от уровня радиации, а также периода, проведенного под солнцем. Многие типы волн люди применяют себе на пользу, пользуясь рентгеновским облучением, инфракрасными лучами, а также ультрафиолетом. Однако солнечные волны в чистом виде в большом количестве могут негативно отразиться на здоровье человека.

Количество радиации зависит от:

  • положения Солнца. Наибольшее количество облучения приходится на равнины и пустыни, где солнцестояние довольно высокое, а погода безоблачная . Полярные области получают минимальное количество света, так как облачность поглощает значительную часть светового потока;
  • длительности дня. Чем ближе к экватору, тем продолжительнее день. Именно там люди получают больше тепла;
  • свойств атмосферы: облачности и влажности. На экваторе повышенная облачность и влажность, что является препятствием для прохождения света. Именно поэтому количество светового потока там меньше, чем в тропических зонах.

Распределение

Распределение солнечного света по земной поверхности неравномерное и имеет зависимость от:

  • плотности и влажности атмосферы. Чем они больше, тем уменьшается облучение;
  • географической широты местности. Количество получаемого света повышается от полюсов к экватору ;
  • движения Земли. Объем излучения меняется в зависимости от времени года;
  • характеристик земной поверхности. Большое количество светового потока отражается в светлых поверхностях, например, снеге. Наиболее слабо отражает световую энергию чернозем.

Из-за протяженности своей территории уровень излучения в России значительно варьируется. Солнечное облучение в северных регионах примерно такое — 810 кВт-час/м 2 за 365 дней, в южных – более 4100 кВт-час/м 2 .

Немаловажное значение имеет длительность часов, на протяжении которых светит солнце . Эти показатели разнообразны в различных регионах, на что влияет не только географическая широта, но и наличие гор. На карте солнечной радиации России хорошо заметно, что в некоторых регионах не целесообразно устанавливать линии электроснабжения, так как естественный свет вполне способен обеспечить потребности жителей в электричестве и тепле.

Виды

Световые потоки достигают Земли различными путями. Именно от этого зависят виды солнечной радиации:

  • Исходящие от солнца лучи называются прямой радиацией . Их сила имеет зависимость от высоты расположения солнца над уровнем горизонта. Максимальный уровень наблюдается в 12 часов дня, минимальный – в утреннее и вечернее время. Кроме того, интенсивность воздействия имеет связь с временем года: наибольшая возникает летом, наименьшая – зимой. Характерно, что в горах уровень радиации больше, чем на равнинных поверхностях. Также грязный воздух снижает прямые световые потоки. Чем ниже солнце над уровнем горизонта, тем меньше ультрафиолета.
  • Отраженная радиация – это излучение, которое отражается водой или поверхностью земли.
  • Рассеянная солнечная радиация формируется при рассеивании светового потока. Именно от нее зависит голубая окраска неба при безоблачной погоде.

Поглощенная солнечная радиация имеет зависимость от отражательной способности земной поверхности – альбедо.

Спектральный состав излучения многообразен:

  • цветные или видимые лучи дают освещенность и имеют большое значение в жизни растений;
  • ультрафиолет должен проникать в тело человека умеренно, так как его переизбыток или нехватка могут нанести вред;
  • инфракрасное облучение дает ощущение тепла и воздействует на рост растительности.

Суммарная солнечная радиация – это проникающие на землю прямые и рассеянные лучи . При отсутствии облачности, примерно около 12 часов дня, а также в летнее время года она достигает своего максимума.

Истории наших читателей

Владимир
61 год

Как происходит воздействие

Электромагнитные волны состоят из различных частей. Есть невидимые, инфракрасные и видимые, ультрафиолетовые лучи. Характерно, что радиационные потоки имеют разную структуру энергии и по-разному влияют на людей.


Световой поток может оказывать благотворное, целебное воздействие на состояние человеческого тела
. Проходя через зрительные органы, свет регулирует метаболизм, режим сна, влияет на общее самочувствие человека. Кроме того, световая энергия способна вызывать ощущение тепла. При облучении кожи в организме происходят фотохимические реакции, способствующие правильному обмену веществ.

Высокой биологической способностью обладает ультрафиолет, имеющий длину волны от 290 до 315 нм. Эти волны синтезируют витамин D в организме, а также способны уничтожать вирус туберкулеза за несколько минут, стафилококк – в течение четверти часа, палочки брюшного тифа – за 1 час.

Характерно, что безоблачная погода снижает длительность возникающих эпидемий гриппа и других заболеваний, например, дифтерии, имеющих способность передаваться воздушно-капельным путем.

Естественные силы организма защищают человека от внезапных атмосферных колебаний: температуры воздуха, влажности, давления. Однако иногда подобная защита ослабевает, что под воздействием сильной влажности совместно с повышенной температурой приводит к тепловому удару.

Воздействие облучения имеет связь от степени его проникновения в организм. Чем длиннее волны, тем сильнее сила излучения . Инфракрасные волны способны проникать до 23 см под кожу, видимые потоки – до 1 см, ультрафиолет – до 0,5-1 мм.

Все виды лучей люди получают во время активности солнца, когда пребывают на открытых пространствах. Световые волны позволяют человеку адаптироваться в мире, именно поэтому для обеспечения комфортного самочувствия в помещениях необходимо создать условия оптимального уровня освещения.

Воздействие на человека

Влияние солнечного излучения на здоровье человека определяется различными факторами. Имеет значение место жительства человека, климат, а также количество времени, проведенного под прямыми лучами.

При нехватке солнца у жителей Крайнего Севера, а также у людей, чья деятельность связана с работой под землей, например у шахтеров, наблюдаются различные расстройства жизнедеятельности, снижается прочность костей, возникают нервные нарушения.

Дети, недополучающие света, страдают рахитом чаще, чем остальные . Кроме того, они более подвержены заболеваниям зубов, а также имеют более длительное протекание туберкулеза.

Однако слишком продолжительное воздействие световых волн без периодической смены дня и ночи может пагубно отразиться на состоянии здоровья. Например, жители Заполярья часто страдают раздражительностью, утомлением, бессонницей, депрессиями, снижением трудоспособности.

Радиация в Российской Федерации имеет меньшую активность, чем, к примеру, в Австралии.

Таким образом, люди, которые находятся под длительным излучением:

  • подвержены высокой вероятности возникновения рака кожных покровов;
  • имеют повышенную склонность к сухости кожи, что, в свою очередь, ускоряет процесс старения и появление пигментации и ранних морщин;
  • могут страдать ухудшением зрительных способностей, катарактой, конъюнктивитом;
  • обладают ослабленным иммунитетом.

Нехватка витамина D у человека является одной из причин злокачественных новообразований, нарушений обмена веществ , что приводит к излишней массе тела, эндокринным нарушениям, расстройству сна, физическому истощению, плохому настроению.

Человек, который систематически получает свет солнца и не злоупотребляет солнечными ванными, как правило, не испытывает проблем со здоровьем:

  • имеет стабильную работу сердца и сосудов;
  • не страдает нервными заболеваниями;
  • обладает хорошим настроением;
  • имеет нормальный обмен веществ;
  • редко болеет.

Таким образом, только дозированное поступление излучения способно положительно отразиться на здоровье человека.

Как защититься


Переизбыток облучения может спровоцировать перегрев организма, ожоги, а также обострение некоторых хронических болезней
. Любителям принимать солнечные ванны необходимо позаботиться о выполнении нехитрых правил:

  • с осторожностью загорать на открытых пространствах;
  • во время жаркой погоды скрываться в тени под рассеянными лучами. В особенности это касается маленьких детей и пожилых людей, страдающих туберкулезом и заболеваниями сердца.

Следует помнить, что загорать необходимо в безопасное время суток, а также не находиться длительное время под палящим солнцем. Кроме того, стоит оберегать от теплового удара голову, нося головной убор, солнцезащитные очки, закрытую одежду, а также использовать различные средства от загара.

Солнечная радиация в медицине

Световые потоки активно применяют в медицине:

  • при рентгене используется способность волн проходить через мягкие ткани и костную систему;
  • введение изотопов позволяет зафиксировать их концентрацию во внутренних органах, обнаружить многие патологии и очаги воспаления;
  • лучевая терапия способна разрушать рост и развитие злокачественных новообразований .

Свойства волн успешно используют во многих физиотерапевтических аппаратах:

  • Приборы с инфракрасным излучением применяют для теплолечения внутренних воспалительных процессов, заболеваний костей, остеохондроза, ревматизма, благодаря способности волн восстанавливать клеточные структуры.
  • Ультрафиолетовые лучи могут отрицательно сказываться на живых существах, угнетать рост растений, подавлять микроорганизмы и вирусы.

Гигиеническое значение солнечной радиации велико. Аппараты с ультрафиолетовым излучением используют в терапии:

  • различных травм кожных покровов: ран, ожогов;
  • инфекций;
  • болезней ротовой полости;
  • онкологических новообразований.

Кроме того, радиация имеет положительное влияние на организм человека в целом: способна придать сил, укрепить иммунную систему, восполнить нехватку витаминов .

Солнечный свет является важным источником полноценной жизни человека. Достаточное его поступление приводит к благоприятному существованию всех живых существ на планете. Человек не может снизить степень радиации, однако в силах оградить себя от его отрицательного воздействия.

Загрузка...