Про наши гаджеты. Понятные инструкции для всех

Реакторы на быстрых нейтронах и их роль в становлении "большой" атомной энергетики. Рекордсмен на быстрых нейтронах

После пуска и успешной эксплуатации Первой в мире АЭС в 1955 году по инициативе И. Курчатова было принято решение о строительстве на Урале промышленной атомной электростанции с водо-водяным реактором канального типа. К особенностям этого типа реакторов относится перегрев пара до высоких параметров непосредственно в активной зоне, что открывало возможность для использования серийного турбинного оборудования.

В 1958 году в центре России в одном из живописнейших уголков уральской природы развернулось строительство Белоярской АЭС. Для монтажников эта станция началась еще в 1957 году, а так как в те времена тема атомных станций была закрыта, в переписке и жизни она называлась Белоярская ГРЭС. Начинали эту станцию работники треста «Уралэнергомонтаж». Их усилиями в 1959 году была создана база с цехом изготовления водопаропроводов (1 контур реактора), построено три жилых дома в поселке Заречный и начато возведение главного корпуса.

В 1959 году на строительстве появились работники треста «Центроэнергомонтаж», которым поручалось монтировать реактор. В конце 1959 года на строительство АЭС был перебазирован участок из Дорогобужа Смоленской области и монтажные работы возглавил В. Невский, будущий директор Белоярской АЭС. Все работы по монтажу тепломеханического оборудования были полностью переданы тресту «Центроэнергомонтаж».

Интенсивный период строительства Белоярской АЭС начался с 1960 года. В это время монтажникам пришлось вместе с ведением строительных работ осваивать новые технологии по монтажу нержавеющих трубопроводов, облицовок спецпомещений и хранилищ радиоактивных отходов, монтаж конструкций реактора, графитовую кладку, автоматическую сварку и т.д. Обучались на ходу у специалистов, которые уже принимали участие в сооружении атомных объектов. Перейдя от технологии монтажа тепловых электростанции к монтажу оборудования атомных электростанций, работники «Центроэнергомонтажа» успешно справились со своими задачами, и 26 апреля 1964 года первый энергоблок Белоярской АЭС с реактором АМБ-100 выдал первый ток в Свердловскую энергосистему. Это событие наряду с вводом в эксплуатацию 1-го энергоблока Нововоронежской АЭС означало рождение большой ядерной энергетики страны.

Реактор АМБ-100 стал дальнейшим усовершенствованием конструкции реактора Первой в мире атомной электростанции в Обнинске. Он представлял собой реактор канального типа с более высокими тепловыми характеристиками активной зоны. Получение пара высоких параметров за счет ядерного перегрева непосредственно в реакторе стало большим шагом вперед в развитии атомной энергетики. реактор работал в одном блоке с турбогенератором мощностью 100 МВт.

В конструктивном отношении реактор первого энергоблока Белоярской АЭС оказался интересен тем, что он создавался фактически бескорпусным, т. е, реактор не имел тяжелого многотонного прочного корпуса, как, скажем, аналогичный по мощности реактор водо-водяного типа ВВЭР с корпусом длиной 11-12 м, диаметром 3-3,5 м, толщиной стенок и днища 100-150 мм и более. Возможность строительства АЭС с реакторами бескорпусного канального типа оказалась весьма заманчивой, поскольку освобождала заводы тяжелого машиностроения от необходимости изготовления стальных изделий массой 200-500 т. Но осуществление ядерного перегрева непосредственно в реакторе оказалось связано с известными трудностями регулирования процесса, особенно в части контроля за его ходом, с требованием точности работы очень многих приборов, наличием большого количества труб различных размеров, находящихся под высоким давлением, и т. д.

Первый блок Белоярской АЭС достиг полной проектной мощности, однако из-за относительно небольшой установленной мощности блока (100 МВт), сложности его технологических каналов и, следовательно, дороговизны, стоимость 1 кВтч электроэнергии оказалось существенно выше, чем у тепловых станций Урала.

Второй блок Белоярской АЭС с реактором АМБ-200 был построен быстрее, без больших напряжений в работе, так как строительно-монтажный коллектив был уже подготовлен. Реакторная установка была значительно усовершенствована. Она имела одноконтурную схему охлаждения, что упростило технологическую схему всей АЭС. Так же как в первом энергоблоке, главная особенность реактора АМБ-200 выдаче пара высоких параметров непосредственно в турбину. 31 декабря 1967 года энергоблок № 2 был включен в сеть – этим было завершено сооружение 1-й очереди станции.

Значительная часть истории эксплуатации 1-й очереди БАЭС была наполнена романтикой и драматизмом, свойственными всему новому. В особенности это было присуще периоду освоения блоков. Считалось, что проблем в этом быть не должно – были прототипы от реактора АМ «Первой в мире» до промышленных реакторов для наработки плутония, на которых апробировались основные концепции, технологии, конструктивные решения, многие типы оборудования и систем, и даже значительная часть технологических режимов. Однако оказалось, что разница между промышленной АЭС и ее предшественниками настолько велика и своеобразна, что возникли новые, ранее неведомые проблемы.

Наиболее крупной и явной из них оказалась неудовлетворительная надежность испарительных и пароперегревательных каналов. После непродолжительного периода их работы появлялась разгерметизация твэлов по газу или течь теплоносителя с неприемлемыми последствиями для графитовой кладки реакторов, технологических режимов эксплуатации и ремонта, радиационного воздействия на персонал и окружающую среду. По научным канонам и расчетным нормативам того времени этого не должно было быть. Углубленные исследования этого нового явления заставили пересмотреть установившиеся представления о фундаментальных закономерностях кипения воды в трубах, так как даже при малой плотности теплового потока возникал неизвестный ранее вид кризиса теплообмена, который был открыт в 1979 году В.Е. Дорощуком (ВТИ) и впоследствии назван «кризис теплообмена II рода».

В 1968 году было принято решение о строительстве на Белоярской АЭС третьего энергоблока с реактором на быстрых нейтронах – БН-600. Научное руководство созданием БН-600 осуществлялось Физико-энергетическим институтом, проект реакторной установки был выполнен Опытным конструкторским бюро машиностроения, а генеральное проектирование блока осуществляло Ленинградское отделение «Атомэлектропроект». Строил блок генеральный подрядчик – трест «Уралэнергострой».

При его проектировании учитывался опыт эксплуатации реакторов БН-350 в г. Шевченко и реактора БОР-60. Для БН-600 была принята более экономичная и конструктивно удачная интегральная компоновка первого контура, в соответствии с которой активная зона реактора, насосы и промежуточные теплообменники размещаются в одном корпусе. Корпус реактора, имеющий диаметр 12,8 м и высоту 12,5 м, устанавливался на катковых опорах, закрепленных на фундаментной плите шахты реактора. Масса реактора в сборе составляла 3900 т., а общее количество натрия в установке превышает 1900 тонн. Биологическая защита была выполнена из стальных цилиндрических экранов, стальных болванок и труб с графитовым заполнителем.

Требования к качеству монтажных и сварочных работ для БН-600 оказались на порядок выше достигнутых ранее, и коллективу монтажников пришлось срочно переобучать персонал и осваивать новые технологии. Так в 1972 году при сборке корпуса реактора из аустенитных сталей на контроле просвечиванием крупных сварных швов впервые был применен бетатрон.

Кроме того, при монтаже внутрикорпусных устройств реактора БН-600 предъявлялись особые требования по чистоте, велась регистрация всех вносимых и выносимых деталей из внутриреакторного пространства. Это было обусловлено невозможностью в дальнейшем промывки реактора и трубопроводов с теплоносителем-натрием.

Большую роль в разработке технологии монтажа реактора сыграл Николай Муравьев, которого удалось пригласить на работу из Нижнего Новгорода, где он раньше работал в конструкторском бюро. Он являлся одним из разработчиков проекта реактора БН-600, и к тому времени уже находился на пенсии.

Коллектив монтажников успешно справился с поставленными задачами по монтажу блока на быстрых нейтронах. Заливка реактора натрием показала, что чистота контура была выдержана даже выше требуемой, так как температура застывания натрия, которая зависит в жидком металле от наличия посторонних загрязнений и окислов, оказалась ниже достигнутых на монтаже реакторов БН-350, БОР-60 в СССР и АЭС «Феникс» во Франции.

Успех работы монтажных коллективов на сооружении Белоярской АЭС во многом зависел от руководителей. Сначала это был Павел Рябуха, потом пришел молодой энергичный Владимир Невский, затем его сменил Вазген Казаров. В. Невский много сделал для становления коллектива монтажников. В 1963 году его назначили директором Белоярской АЭС, а в дальнейшем он возглавил «Главатомэнерго», где много трудился для становления атомной энергетики страны.

Наконец, 8 апреля 1980 г. состоялся энергетический пуск энергоблока № 3 Белоярской АЭС с реактором на быстрых нейтронах БН-600. Некоторые проектные характеристики БН-600:

  • электрическая мощность – 600 МВт;
  • тепловая мощность – 1470 МВт;
  • температура пара – 505 о С;
  • давление пара – 13,7 МПа;
  • термодинамический КПД брутто – 40,59 %.

Следует специально остановиться на опыте обращения с натрием в качестве теплоносителя. Он имеет неплохие теплофизические и удовлетворительные ядерно-физические свойства, хорошо совместим с нержавеющими сталями, двуокисью урана и плутония. Наконец, он не дефицитен и относительно недорог. Однако он весьма химически активен, из-за чего его применение потребовало решения, по крайней мере, двух серьезных задач: сведения к минимуму вероятности течи натрия из контуров циркуляции и межконтурных течей в парогенераторах и обеспечения эффективной локализации и прекращения горения натрия в случае го утечки.

Первая задача в целом довольно успешно была решена в стадии разработки проектов оборудования и трубопроводов. Весьма удачной оказалась интегральная компоновка реактора, при которой все основное оборудование и трубопроводы 1-го контура с радиоактивным натрием были «спрятаны» внутри корпуса реактора, и поэтому его утечка в принципе оказалась возможной только из немногочисленных вспомогательных систем.

И хотя БН-600 сегодня является самым крупным энергоблоком с реактором на быстрых нейтронах в мире, Белоярская АЭС не входит в число атомных станций с большой установленной мощностью. Ее отличия и достоинства определяются новизной и уникальностью производства, его целей, технологии и оборудования. Все реакторные установки БелАЭС были предназначены для опытно-промышленного подтверждения или отрицания заложенных проектировщиками и конструкторами технических идей и решений, исследования технологических режимов, конструкционных материалов, тепловыделяющих элементов, управляющих и защитных систем.

Все три энергоблока не имеют прямых аналогов ни у нас в стране, ни за рубежом. В них были воплощены многие из идей перспективного развития ядерной энергетики:

  • сооружены и освоены энергоблоки с канальными водографитовыми реакторами промышленных масштабов;
  • применены серийные турбоустановки высоких параметров с КПД теплосилового цикла от 36 до 42 %, чего не имеет ни одна АЭС в мире;
  • применены ТВС, конструкция которых исключает возможность попаданий осколочной активности в теплоноситель даже при разрушении твэлов;
  • в первом контуре реактора 2-го блока применены углеродистые стали;
  • в значительной мере освоена технология применения и обращения с жидкометаллическим теплоносителем;

Белоярской АЭС первой из атомных электростанций России столкнулась на практике с необходимостью решения задачи вывода из эксплуатации отработавших ресурс реакторных установок. Развитие этого весьма актуального для всей атомной энергетики направления деятельности из-за отсутствия организационно-нормативной документальной базы и нерешенности вопроса финансового обеспечения имело длительный инкубационный период.

Более чем 50-летний период эксплуатации Белоярской АЭС имеет три достаточно выраженных этапа, каждому из которых были присущи свои направлений деятельности, специфические трудности ее осуществления, успехи и разочарования.

Первый этап (с 1964 года до середины 70-х гг.) был всецело связан с пуском, освоением и достижением проектного уровня мощности энергоблоков 1-й очереди, множеством реконструктивных работ и решением проблем, связанных с несовершенством проектов блоков, технологических режимов и обеспечением устойчивой работы топливных каналов. Все это потребовало от коллектива станции огромных физических и интеллектуальных усилий, которые, к сожалению, не увенчались уверенностью в правильности и перспективности выбора уран-графитовых реакторов с ядерным перегревом пара для дальнейшего развития атомной энергетики. Однако наиболее существенная часть накопленного опыта эксплуатации 1-й очереди была учтена проектировщиками и конструкторами при создании уран-графитовых реакторов последующего поколения.

Начало 70-х годов связано с выбором для дальнейшего развития атомной энергетики страны нового направления – реакторных установок на быстрых нейтронах с последующей перспективой строительства нескольких энергоблоков с реакторами-размножителями на смешанном уран-плутониевом топливе. При определении места строительства первого опытно-промышленного блока на быстрых нейтронах выбор пал на Белоярскую АЭС. Существенное влияние на этот выбор оказало признание способностей коллективов строителей, монтажников и персонала станции должным образом построить этот уникальный энергоблок и в дальнейшем обеспечить его надежную эксплуатацию.

Это решение обозначило второй этап в развитии Белоярской АЭС, которым большей своей частью был завершен с решением Государственной комиссии о приемке законченного строительства энергоблока с реактором БН-600 с редко применяемой в практике оценкой «отлично».

Обеспечение качественного выполнения работ этого этапа было поручено лучшим специалистам как у подрядчиков по строительству и монтажу, так и из состава эксплуатационного персонала станции. Персонал станции приобрел большой опыт в наладке и освоении оборудования АЭС, что было активно и плодотворно использовано в ходе пусконаладочных работ на Чернобыльской и Курской АЭС. Особо следует сказать о Билибинской АЭС, на которой кроме пуско-наладочных работ был выполнен глубокий анализ проекта, на базе которого был внесен ряд значительных усовершенствований.

С пуском в эксплуатацию третьего блока начался третий этап существования станции, продолжающийся уже более 35 лет. Целями этого этапа было достижение проектных показателей блока, подтверждение практикой жизнеспособности конструктивных решений и приобретение опыта эксплуатации для последующего учета в проекте серийного блока с реактором-размножителем. Все эти цели к настоящему времени успешно достигнуты.

Концепции обеспечения безопасности, заложенные в проекте блока, в целом подтвердились. Так как точка кипения натрия почти на 300 о С превышает его рабочую температуру, реактор БН-600 работает почти без давления в корпусе реактора, который стало возможным изготовить из высокопластичной стали. Это практически исключает возможность возникновения быстроразвивающихся трещин. А трехконтурная схема передачи тепла от активной зоны реактора с увеличением давления в каждом последующем контуре полностью исключает возможность попадания радиоактивного натрия 1-го контура во второй (не радиоактивный) и тем более – в пароводяной третий контур.

Подтверждением достигнутого высокого уровня безопасности и надежности БН-600 является выполненный после аварии на Чернобыльской АЭС анализ безопасности, который не выявил необходимости каких-либо технических усовершенствований срочного характера. Статистика срабатывания аварийных защит, аварийных отключений, неплановых снижений рабочей мощности и других отказов показывает, что реактор БН-6ОО находится, по крайней мере, в числе 25 % лучших ядерных блоков мира.

По итогам ежегодного конкурса Белоярская АЭС в 1994, 1995, 1997 и 2001 гг. удостаивалась звания «Лучшая АЭС России».

В предпусковой стадии находится энергоблок № 4 с реактором на быстрых нейтронах БН-800. Новый 4-й энергоблок с реактором БН-800 мощностью 880 МВт 27 июня 2014 года был выведен на минимальный контролируемый уровень мощности. Энергоблок призван существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счёт организации замкнутого ядерно-топливного цикла.

Рассматривается возможность дальнейшего расширения Белоярской АЭС энергоблоком № 5 с быстрым реактором мощностью 1200 МВт – головного коммерческого энергоблока для серийного строительства.

Ядерные реакторы на быстрых нейтронах

Первая в мире атомная электростанция (АЭС), построенная в городе Обнинске под Москвой, дала ток в июне 1954 года. Мощность ее была весьма скромной – 5 МВт. Однако она сыграла роль экспериментальной установки, где накапливался опыт эксплуатации будущих крупных АЭС. Впервые была доказана возможность производства электрической энергии на основе расщепления ядер урана, а не за счет сжигания органического топлива и не за счет гидравлической энергии.

АЭС использует ядра тяжелых элементов – урана и плутония. При делении ядер выделяется энергия – она и «работает» в атомных электростанциях. Но можно использовать только ядра, имеющие определенную массу – ядра изотопов. В атомных ядрах изотопов содержится одинаковое число протонов и разное – нейтронов, из-за чего ядра разных изотопов одного и того же элемента имеют разную массу. У урана, например, 15 изотопов, но в ядерных реакциях участвует только уран-235.

Реакция деления протекает следующим образом. Ядро урана самопроизвольно распадается на несколько осколков; среди них есть частицы высокой энергии – нейтроны. В среднем на каждые 10 распадов приходится 25 нейтронов. Они попадают в ядра соседних атомов и разбивают их, высвобождая нейтроны и огромное количество тепла. При делении грамм урана выделяется столько же тепла, сколько при сгорании трех тонн каменного угля.

Пространство в реакторе, где находится ядерное топливо, называют активной зоной. Здесь идет деление атомных ядер урана и выделяется тепловая энергия. Чтобы предохранить обслуживающий персонал от вредного излучения, сопровождающего цепную реакцию, стенки реактора делают достаточно толстыми. Скоростью цепной ядерной реакции управляют регулирующие стержни из вещества, поглощающего нейтроны (чаще всего это бор или кадмий). Чем глубже опускают стержни в активную зону, тем больше нейтронов они поглощают, тем меньше нейтронов участвует в реакции и меньше выделяется тепла. И наоборот, когда регулирующие стержни поднимают из активной зоны, количество нейтронов, участвующих в реакции, возрастает, все большее число атомов урана делится, освобождая скрытую в них тепловую энергию.

На случай, если возникнет перегрев активной зоны, предусмотрена аварийная остановка ядерного реактора. Аварийные стержни быстро падают в активную зону, интенсивно поглощают нейтроны, цепная реакция замедляется или прекращается.

Тепло из ядерного реактора выводят с помощью жидкого или газообразного теплоносителя, который прокачивают насосами через активную зону. Теплоносителем может быть вода, металлический натрий или газообразные вещества. Он отбирает у ядерного топлива тепло и передает его в теплообменник. Эта замкнутая система с теплоносителем называется первым контуром. В теплообменнике тепло первого контура нагревает до кипения воду второго контура. Образующийся пар направляют в турбину или используют для теплофикации промышленных и жилых зданий.

До катастрофы на АЭС в Чернобыле советские ученые с уверенностью говорили о том, что в ближайшие годы в атомной энергетике будут широко использовать два основных типа реакторов. Один из них, ВВЭР – водо-водяной энергетический реактор, а другой – РБМК – реактор большой мощности, канальный. Оба типа относятся к реакторам на медленных (тепловых) нейтронах.

В водо-водяном реакторе активная зона заключена в огромный, диаметром 4 и высотой 15 метров, стальной корпус-цилиндр с толстыми стенами и массивной крышкой. Внутри корпуса давление достигает 160 атмосфер. Теплоносителем, отбирающим тепло в зоне реакции, служит вода, которую прокачивают насосами. Эта же вода служит и замедлителем нейтронов. В парогенераторе она нагревает и превращает в пар воду второго контура. Пар поступает в турбину и вращает ее. И первый и второй контуры – замкнутые.

Раз в полгода выгоревшее ядерное горючее заменяют на свежее, для чего надо реактор остановить и охладить. В России по этой схеме работают Нововоронежская, Кольская и другие АЭС.

В РБМК замедлителем служит графит, а теплоносителем – вода. Пар для турбины получается непосредственно в реакторе и туда же возвращается после использования в турбине. Топливо в реакторе можно заменять постепенно, не останавливая и не расхолаживая его.

Первая в мире Обнинская АЭС относится именно к этому типу. По той же схеме построены Ленинградская, Чернобыльская, Курская, Смоленская станции большой мощности.

Одной из серьезных проблем АЭС является утилизация ядерных отходов. Во Франции, к примеру, этим занимается крупная фирма «Кожема». Топливо, содержащее уран и плутоний, с большой осторожностью, в специальных транспортных контейнерах – герметичных и охлаждаемых – направляется на переработку, а отходы – на остекловывание и захоронение.

«Нам показали отдельные этапы переработки топлива, привезенного с АЭС с величайшей осторожностью, – пишет в журнале «Наука и жизнь» И. Лаговский. – Разгрузочные автоматы, камера разгрузки. Заглянуть в нее можно через окно. Толщина стекла в окне 1 метр 20 сантиметров. У окна манипулятор. Невообразимая чистота вокруг. Белые комбинезоны. Мягкий свет, искусственные пальмы и розы. Теплица с настоящими растениями для отдыха после работы в зоне. Шкафы с контрольной аппаратурой МАГАТЭ – международного агентства по атомной энергии. Операторский зал – два полукруга с дисплеями, – отсюда управляют разгрузкой, резанием, растворением, остекловыванием. Все операции, все перемещения контейнера последовательно отражаются на дисплеях у операторов. Сами залы работ с материалами высокой активности находятся довольно далеко, на другой стороне улицы.

Остеклованные отходы невелики по объему. Их заключают в стальные контейнеры и хранят в вентилируемых шахтах, пока не повезут на место окончательного захоронения…

Сами контейнеры являют собой произведение инженерного искусства, целью которого было соорудить нечто такое, что невозможно разрушить. Железнодорожные платформы, груженные контейнерами, пускали под откос, таранили на полном ходу встречными поездами, устраивали другие мыслимые и немыслимые аварии при перевозке – контейнеры выдерживали все».

После чернобыльской катастрофы 1986 года ученые стали сомневаться в безопасности эксплуатации АЭС и, в особенности, реакторов типа РБМК. Тип ВВЭР в этом отношении более благополучен: авария на американской станции Тримайл-айленд в 1979 году, где частично расплавилась активная зона реактора, радиоактивность не вышла за пределы корпуса. В пользу ВВЭР говорит долгая безаварийная эксплуатация японских АЭС.

И, тем не менее, есть еще одно направление, которое, по мнению ученых, способно обеспечить человечество теплом и светом на ближайшее тысячелетие. Имеются в виду реакторы на быстрых нейтронах, или реакторы-размножители. В них используется уран-238, но для получения не энергии, а горючего. Этот изотоп хорошо поглощает быстрые нейтроны и превращается в другой элемент – плутоний-239. Реакторы на быстрых нейтронах очень компактны: им не нужны ни замедлители, ни поглотители – их роль играет уран-238. Называются они реакторами-размножителями, или бридерами (от английского слова «breed» – размножать). Воспроизведение ядерного горючего позволяет в десятки раз полнее использовать уран, поэтому реакторы на быстрых нейтронах считаются одним из перспективных направлений атомной энергетики.

В реакторах такого типа, кроме тепла, нарабатывается еще и вторичное ядерное топливо, которое можно использовать в дальнейшем. Здесь ни в первом, ни во втором контурах нет высокого давления. Теплоноситель – жидкий натрий. Он циркулирует в первом контуре, нагревается сам и передает тепло натрию второго контура, а тот, в свою очередь, нагревает воду в пароводяном контуре, превращая ее в пар. Теплообменники изолированы от реактора.

Одна из таких перспективных станций – ей дали название Монзю – была построена в районе Шираки на побережье Японского моря в курортной зоне в четырехстах километрах к западу от столицы.

«Для Японии, – говорит руководитель отдела ядерной корпорации Кансаи К. Такеноучи, – использование реакторов-размножителей означает возможность уменьшить зависимость от привозного природного урана за счет многократного использования плутония. Поэтому понятно наше стремление к разработке и совершенствованию "быстрых реакторов", достижению технического уровня, способного выдержать конкуренцию с современными АЭС в отношении экономичности и безопасности.

Развитие реакторов-размножителей должно стать основной программой выработки электроэнергии в ближайшем будущем».

Строительство реактора Монзю – уже вторая стадия освоения реакторов на быстрых нейтронах в Японии. Первой было проектирование и постройка экспериментального реактора Джойо (что по-японски означает «вечный свет») мощностью 50-100 МВт, который начал работать в 1978 году. На нем исследовались поведение топлива, новые конструкционные материалы, узлы.

Проект Монзю стартовал в 1968 году. В октябре 1985 года начали сооружать станцию – рыть котлован. В процессе освоения площадки 2 миллиона 300 тысяч кубометров скального грунта было сброшено в море. Тепловая мощность реактора – 714 МВт. Топливом служит смесь окислов плутония и урана. В активной зоне 19 регулирующих стержней, 198 топливных блоков, в каждом из которых по 169 топливных стержней (тепловыделяющих элементов – ТВЭЛов) диаметром 6,5 миллиметров. Они окружены радиальными топливовоспроизводящими блоками (172 штуки) и блоками нейтронных экранов (316 штук).

Весь реактор собран как матрешка, только разобрать его уже невозможно. Огромный корпус реактора, из нержавеющей стали (диаметр – 7,1 метра, высота – 17,8 метра), помещен в защитный кожух на случай, если при аварии разольется натрий.

«Стальные конструкции камеры реактора, – сообщает в журнале «Наука и жизнь» А Лаговский, – обечайки и стеновые блоки – в качестве защиты заполнены бетоном. Первичные натриевые системы охлаждения вместе с корпусом реактора окружены противоаварийной оболочкой с ребрами жесткости – ее внутренний диаметр 49,5 метра, а высота – 79,4 метра. Эллипсоидное дно этой громады покоится на сплошной бетонной подушке высотой 13,5 метра. Оболочка окружена полутораметровым кольцевым зазором, а далее следует толстый слой (1-1,8 метра) армированного бетона. Купол оболочки также защищен слоем армированного бетона толщиной 0,5 метра.

Вслед за противоаварийной оболочкой устроен еще один защитный корпус – вспомогательный – размером 100 на 115 метров, удовлетворяющий требованиям противосейсмического строительства. Чем не саркофаг?

Во вспомогательном корпусе реактора размещены вторичные системы натриевого охлаждения, пароводяные системы, топливные загрузочно-разгрузочные устройства, резервуар для хранения отработанного топлива. В отдельных помещениях расположены турбогенератор и резервные дизель-генераторы.

Прочность противоаварийной оболочки рассчитана как на избыточное давление в 0,5 атмосферы, так и на вакуум в 0,05 атмосферы. Вакуум может образоваться при выгорании кислорода в кольцевом зазоре, если разольется жидкий натрий. Все бетонные поверхности, которые могут войти в контакт с разлившимся натрием, сплошь облицованы стальными листами, достаточно толстыми для того, чтобы выдержать тепловые напряжения. Так защищаются на тот случай, которого вообще может и не произойти, поскольку должна быть гарантия и на трубопроводы, и на все другие части атомной установки».

Из книги Непознанное, отвергнутое или сокрытое автора Царева Ирина Борисовна

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

Из книги Большая Советская Энциклопедия (РЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЯД) автора БСЭ

Ядерные боеприпасы Ядерные боеприпасы, боевые части ракет, торпед, авиационные (глубинные) бомбы, артиллерийские выстрелы, фугасы с ядерными зарядами. Предназначены для поражения различных целей, разрушения укреплений, сооружений и других задач. Действие Я. б. основано

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Из книги Эксплуатация электрических подстанций и распределительных устройств автора Красник В. В.

Из книги 100 великих тайн Востока [с иллюстрациями] автора Непомнящий Николай Николаевич

Из книги Большая энциклопедия консервирования автора Семикова Надежда Александровна

Из книги Большая энциклопедия техники автора Коллектив авторов

Из книги Бестселлер на миллион. Как написать, издать и раскрутить ваш бестселлер автора Масленников Роман Михайлович

Может собственных Платонов / И быстрых разумов Невтонов / Российская земля рождать Из оды «На день восшествия на престол императрицы Елизаветы» (1747) Михаила Васильевича Ломоносова (1711 - 1765).«Невтон» - старинное произношение имени английского физика и математика Исаака

Из книги автора

Что может собственных Платонов / И быстрых разумом Невтонов / Российская земля рождать Из «Оды на день восшествия на всероссийский престол ее Величества Государыни Императрицы Елисаветы Петровны 1747 года» Михаила Васильевича Ломоносова (1711 - 1765). «Невтон» -

Из книги автора

2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов Электрические сети 35 кВ и ниже работают с изолированной нейтралью обмоток трансформаторов или заземлением через дугогасящие реакторы, сети 110 кВ и выше - с эффективным

Из книги автора

Из книги автора

Из книги автора

Реакторы химические Реакторы химические – устройства, обеспечивающие химические реакции. Различаются по конструкции, условиям протекания реакции, состоянию веществ, которые в реакторе взаимодействуют (их концентрации, давлению, температуре). В зависимости от

Из книги автора

Три раздела для самых быстрых Эта книга небольшая, так задумано специально. Как волшебный пинок! Прочитали – сделали – получили результат.Сейчас будут три раздела для самых активных. Если вы быстро схватываете, вам будет достаточно уже этих пяти страниц, чтобы совершить

Атомной энергетике всегда уделялось повышенное внимание из-за ее перспективности. В мире около двадцати процентов электроэнергии получают при помощи атомных реакторов, а в развитых странах этот показатель продукта атомной энергетики еще выше – больше трети от всего электричества. Однако, основным видом реакторов остаются тепловые, типа LWR и ВВЭР. Ученые считают, что одной из основных проблем этих реакторов в ближайшее время будет нехватка природного топлива, урана, его изотопа 238, необходимого для проведения цепной реакции деления. Исходя из возможного истощения ресурсов этого естественного материала топлива для тепловых реакторов, на развитие атомной энергетики накладываются ограничения. Более перспективным считается применение ядерных реакторов с использованием быстрых нейтронов, при котором возможно воспроизводство топлива.

История разработки

Исходя из программы Министерства атомной промышленности РФ в начале века были поставлены задачи по созданию и обеспечению безопасной работы ядерных комплексов энергетики, модернизированных АЭС нового типа. Одним из таких объектов стала Белоярская атомная электростанция, расположенная в 50-и километрах под Свердловском (Екатеринбург) Решение о ее создании принято в 1957 году, а в 1964 – запущен в работу первый блок.

В двух ее блоках работали тепловые ядерные реакторы, которые к 80-90 годам прошлого века исчерпали свой ресурс. На третьем блоке впервые в мире был апробирован реактор на быстрых нейтронах БН-600. За время его работы были получены планируемые разработчиками результаты. На высоте оказалась и безопасность процесса. В течение проектного срока, а он закончился в 2010 году, не произошло никаких серьезных нарушений и отклонений. Окончательный срок его работы истекает к 2025 году. Уже сейчас можно сказать, что ядерные реакторы на быстрых нейтронах, к которым относятся БН-600 и его преемник, БН-800, имеют большое будущее.

Запуск нового БН-800

Ученые ОКБМ им. Африкантова из Горького (нынешний Нижний Новгород) подготовили проект четвертого энергоблока Белоярской АЭС еще в 1983 году. В связи с аварией, произошедшей в Чернобыле в 1987 и введения новых нормативов безопасности в 1993 работы были прекращены и запуск отложен на неопределенное время. Только в 1997 году после получения лицензии на возведение блока №4 с реактором БН-800 мощностью 880 МВт от Госатомнадзора процесс возобновился.

25-го декабря 2013 началось разогревание реактора для дальнейшего вхождения теплоносителя. В июне четырнадцатого, как и намечалось по плану, произошел выход на массу, достаточную для проведения минимальной цепной реакции. Дальше дело застопорилось. МОКС-топливо, состоящее из делящихся оксидов урана и плутония, аналогичное тому, что применялось в энергоблоке №3, и не было готово. Именно его хотели использовать разработчики в новом реакторе. Пришлось комбинировать, искать новые варианты. В результате, чтобы не переносить запуск энергоблока, решили применять в части сборки урановое топливо. Запуск ядерного реактора БН-800 и блока №4 состоялся 10 декабря 2015.

Описание процесса

Во время работы в реакторе с быстрыми нейтронами происходит образование, вследствие реакции деления, вторичных элементов, которые при процессе поглощения урановой массой образуют вновь созданный ядерный материал плутоний-239, способный продолжать процесс дальнейшего деления. Главным достоинством этой реакции является получение нейтронов плутония, который применяется в качестве топлива для ядерных реакторов АЭС. Его наличие позволяет сократить добычу урана, запасы которого ограничены. Из килограмма урана-235 можно получить чуть более килограмма плутония-239, обеспечивая тем самым воспроизводство топлива.

В результате производство энергии в атомных энергоблоках при наименьших расходах дефицитного урана и отсутствия ограничений на производство возрастет в сотни раз. Подсчитано, что в этом случае урановых запасов хватит человечеству на несколько десятков веков. Оптимальным вариантом в атомной энергетике для сохранения баланса по минимальному расходу урана будет соотношение 4 к 1, где на четыре тепловых реактора будет использоваться один, работающий на быстрых нейтронах.

Цели БН-800

Во время срока эксплуатации в энергоблоке №4 Белоярской АЭС перед ядерным реактором были поставлены определенные задачи. Реактор БН-800 должен работать на MOX топливе. Небольшая заминка, произошедшая в начале работы, планы создателей не поменяла. По словам директора Белоярской АЭС г-н Сидорова переход в полном объеме на MOX топливо будет осуществлен в 2019 году. Если это осуществится, то местный ядерный реактор на быстрых нейтронах станет первым мире, полностью работающим с таким топливом. Он должен стать прототипом будущих подобных быстрых реакторов с жидкометаллическим теплоносителем, более производительных и безопасных. Исходя из этого на БН-800 проходит апробирование инновационного оборудования в рабочих условиях, проверка правильности применения новых технологий, влияющих на надежность, экономичность работы энергоблока.

class="eliadunit">

Проверка работы новой системы топливного цикла.

Испытания по выжиганию радиоактивных отходов с длительным сроком жизни.

Утилизация, накопленного в больших количествах, оружейного плутония.

БН-800, так же, как и его предшественник, БН-600, должны стать отправной точкой для накопления бесценного опыта создания и эксплуатации быстрых реакторов российским разработчикам.

Преимущества реактора на быстрых нейтронах

Применение в атомной энергетике БН-800 и ему подобных ядерных реакторов позволяет

Существенно увеличить срок по запасам урановых ресурсов, что значительно увеличивает полученный объем энергии.

Возможность сокращать срок жизни радиоактивных продуктов деления до минимального (от несколько тысяч лет до трехсот).

Повысить безопасность АЭС. Применение реактора на быстрых нейтронах позволяет нивелировать до минимального уровня возможность расплавления активной зоны, позволяет существенно повысить уровень самозащиты объекта, исключить выделения плутония при переработке. Реакторы такого типа с натриевым теплоносителем обладают повышенным уровнем безопасности.

17 августа 2016 года энергоблок №4 Белоярской АЭС вышел на режим работы мощности 100%. В объединенную систему «Урал» с декабря прошлого года поступает энергия, выработанная на быстром реакторе.

class="eliadunit">

И тех перспектив, которые несет лидерство в этой области.

Ядерные технологии в России всегда занимали особое место: они обеспечивали стратегическую защищённость, поддерживали глобальный паритет на этапах превосходства противников на мировой арене в сфере военных технологий, обеспечивали энергетическую безопасность. В современном мире развитие ядерных и радиационных технологий является одним из двигателей индустриального и общественного развития (крупный технологический проект неизбежно оказывается полюсом влияния на образование, экологию, экономику и культуру).

В настоящее время ядерным технологиям мир обязан порядка 13% всей производимой электроэнергии, с минимальной стоимостью киловатт-часа и самыми низкими показателями экологического загрязнения

При строительстве АЭС, чтобы добиться хоть каких-то цифр относительно воздействия на окружающую среду и выброса CO2, учитываются даже выхлопы дизельных генераторов строителей.

С чисто технологической точки зрения стоит отметить, что завидные показатели ядерной энергетики достигнуты с использованием реакторов, которые работают на «тепловых» или «медленных» нейтронах – нейтронах, прошедших через специальный замедлитель (вода, тяжёлая вода или графит), скинувших избыток энергии и запустивших самоподдерживающуюся цепную ядерную реакцию. Соответственно, от количества доступных для ядерной реакции свободных нейтронов и способности топлива их захватывать зависит скорость протекания реакции и многие инженерно-конструкторские задачи, которые необходимо решить для успешной работы ядерного реактора. По наблюдениям учёных, в технологии так называемых быстрых реакторов (а.к.а. «бридеры» или «реакторы-размножители») – есть избыток нейтронов, формируется нейтронный поток в 2,3 свободных нейтрона против 1 для тепловых реакторов. Этот колоссальный потенциал, помимо непосредственного энергогенерирующего применения, можно использовать для воспроизводства ядерного топлива и для решения других задач: когенерации электричества и тепла, опреснения воды, производства водорода и прочих.

Работающая сегодня ядерная энергетика в качестве топлива использует почти исключительно уран-235, содержание которого – всего 0,7% в ископаемом уране. До операбельного количества процент урана-235 в топливных элементах доводится за счёт специальных обогатительных процедур. Быстрые реакторы могут нарабатывать плутоний, чем вовлекают в генерацию и идущий сегодня на склады/свалки уран-238, содержание которого в добытой руде составляет оставшиеся 99,3%; а плутоний, в свою очередь, отлично подходит в качестве топлива для оперируемых сегодня тепловых реакторов, то есть в быстрых реакторах образуется больше топлива, чем потребляется!

Согласно оценкам МАГАТЭ, разведанных запасов урана-235 хватит приблизительно на 85 лет – это на порядок меньше, чем нефти или газа. У такой ядерной энергетики долговременного будущего, по всей очевидности, нет. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла.

Эта версия развития открывает к использованию все природные ресурсы урана (235 и 238), а также тория и наработанного оружейного плутония, и тогда разведанных запасов хватит на (по разным оценкам) приблизительно 2500 лет, с учётом неукоснительного роста энергопотребления и дефицита ресурсов по Мальтусу. Неудивительно, что бридеры с самого начала развития ядерной энергетики полагались будущей основой мировой ядерно-генерирующей индустрии. В роли «ограничителя» выступает уровень развития технологий: работа с быстрыми реакторами, подразумевающая замыкание топливного цикла, ещё требует дорогого и сложного комплекса по переработке и рециклу облучённого ядерного топлива. Но, несмотря на более высокие удельные затраты на переработку ОЯТ быстрых реакторов, меньшие требуемые объемы перерабатываемых материалов для получения единицы плутония делают этот процесс экономически чертовски выгодным – по сравнению с сегодняшней переработкой отходов тепловых реакторов.

К слову о накопленных радиоактивных отходах: быстрые реакторы позволяют перерабатывать оружейный плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). Отработанное топливо медленных реакторов – это новое топливо для будущей ядерной энергетики, и такое будущее уже наступает. И целых два предприятия, способных перерабатывать облучённое ядерное топливо, находятся в России. В мире таких заводов не многим больше, чем два российских.

Мировая гонка за быстрыми реакторами

Первый в мире ядерный реактор был «медленным»: он был построен Энрико Ферми под западными трибунами футбольного поля Чикагского университета из графитовых и урановых блоков, на 28 минут с помощью такой-то матери запущен в 1942-ом году и не имел решительно никакой защиты от радиации и системы охлаждения. По довольно точному описанию самого г-на Ферми, эта разработка выглядела как «сырая куча черных кирпичей и деревянных брёвен», чем фактически и являлась. Но уже тогда он мечтал построить быстрый реактор.

Первые быстрые реакторы, соответственно, и появились в Америке: в Лос-Аламос в 1946-ом заработал стенд «Клементина», в котором в качестве довольно экзотичного теплоносителя выступала ртуть; а в 1951-м в Айдахо был запущен первый энергетический реактор EBR-1 (Experimental Breeder Reactor) мощностью всего 0,2 МВт, который продемонстрировал возможность одновременного производства электроэнергии и ядерного топлива в одном устройстве и дал старт истории атомной энергетики. Позднее, в 1963 году, в Детройте был запущен опытно-промышленный реактор на быстрых нейтронах «Энрико Ферми» мощностью около 100 МВт, но спустя всего три года там произошла серьезная авария с расплавлением части активной зоны – правда, без последствий для окружающей среды или людей.

Необходимая для советского атомного проекта возможность расширенного производства плутония была доказана на первом исследовательском советском реакторе с номенклатурно-незатейливым названием БР-1, запущенном в Обнинске в 1956-ом году. Получить же необходимые для разработки энергетического быстрого реактора данные удалось только на более старшей версии БР-5, созданной в 1959 году. Позднее, в 1970-ом, был пущен экспериментальный реактор БОР-60 в НИИАР (Димитровград), который до сих обеспечивает город теплом и электричеством. Далее технология была также отработана на первом в мире энергетическом реакторе на быстрых нейтронах БН-350, стартовавшем в 1973-м и занимавшимся энергогенерацией и опреснением воды в степях вплоть до его остановки в 1990-х годах. Впрочем, БН-350 был остановлен не по исчерпанию технического ресурса, а из-за опасений касательно качества обеспечения его эксплуатации после распада СССР.

В 1980-м , по состоянию на сегодня – единственный в мире действующий промышленный реактор на быстрых нейтронах. Сегодня на стадии технического проектирования уже находится реактор нового поколения БН-1200, предназначенный для серийного сооружения, – его ввод в эксплуатацию намечен на 2025. Также к 2020 на территории Сибирского химического комбината в Северске планируется запуск быстрого реактора на 300 МВт со свинцово-висмутовым теплоносителем – эта технология десятилетиями отрабатывалась в реакторах подводных лодок и ледоколов.

В конце 1950-х годов к лидерам ядерной гонки присоединились Англия и Франция со своими проектами. В 1986-м консорциум европейских стран подключил к сети реактор «Суперфеникс», при создании которого заимствовались некоторые решения, воплощенные ранее в советском БН-600, но в 1996 году проект был закрыт без права воскрешения. Дело в том, что стараниями масс-медиа вокруг «Суперфеникса» была раздута массовая истерия: строящийся реактор ассоциировался в первую очередь с наработкой плутония.

Раздутая в медийном поле катавасия вылилась в шестидесятитысячные акции протеста, перерастающие в уличные беспорядки, а через год после физического пуска, здание АЭС было в пять залпов обстреляно через Рону из советского противотанкового гранатомёта РПГ-7.

Существенного урона станции авторы этого праздника жизни, к счастью, нанести не смогли. Но проект вскоре был свернут. Впрочем, в 2010-ом французы вновь возвращаются к строительству реактора на быстрых нейтронах с натриевым теплоносителем – проект зовётся «Astrid», планируемая мощность – 600 МВт. И хотя Франция в своей программе быстрых реакторов опирается на собственные разработки, она по-прежнему в основном использует русские обогатительные производства.

Догнать и перегнать всех на свете стремятся китайцы, в том числе потому, что их здесь обошла Индия, которая после многочисленных переносов собирается в этом году провести физический пуск демонстрационного быстрого реактора собственной разработки PFBR-500. После его ввода Индия хочет приступить к строительству серии из шести коммерческих энергоблоков по 500 МВт каждый и на той же территории построить завод по переработке ядерного топлива, вовлекая свой ядерно-топливный торий, которого у них очень много.

Японцы, в свою очередь, вопреки ожидаемой реакции после фукусимской аварии, продолжают возрождение быстрого реактора «Мондзу», работавшего с 1994 по 1995 гг. К слову отметить, не стоит обманываться в отношении фукусимской трагедии: для ядерной энергетики вообще характерна цикличность развития. После каждой аварии (Трёхмильный остров, Чернобыль, Фукусима) интерес к АЭС слегка ослабевает, но потом потребности в электроэнергии снова диктуют свой категорический императив – и вот в эксплуатацию вводятся следующие поколения реакторов, с новыми типами защитных механизмов.

Всего в мире было разработано порядка 30 концепций быстрых реакторов, часть из которых была экспериментально отработана «в железе». Но похвастаться отработанными технологиями и безаварийной эксплуатацией промышленных быстрых реакторов в своём национальном портфолио на сегодня может только одна страна – и это Россия.

Сложная инженерия

Достоинства быстрых реакторов очевидны, равно как очевидна и инженерная сложность их создания. Отсутствие необходимых технологий – вот одна из ключевых причин, почему быстрые реакторы на текущий момент не получили более широкого распространения. Как отмечалось ранее, воду – замедлитель нейтронов – в быстрых реакторах использовать нельзя, поэтому используются металлы в жидком состоянии: от самого распространённого натрия до свинцово-висмутовых сплавов. Использование жидкометаллического теплоносителя в условиях многократно более интенсивного энерговыделения, чем в традиционных реакторах, ставит ещё одну серьёзную задачу – материаловедческую. Все компоненты корпуса реактора и внутриреакторных систем необходимо изготавливать из коррозиестойких спецматериалов, способных выдержать характерные для жидкого натрия в быстром реакторе 550°C.

Проблема подбора правильных материалов создала немало задач для неиссякаемой находчивости отечественных инженеров. Когда в активной зоне работающего реактора искривилась одна топливная сборка, чтобы её достать, французские атомщики изобрели сложный и дорогой способ «видения» сквозь слой жидкого натрия. Когда та же проблема возникла у русских, наши инженеры решили элегантно использовать простую видеокамеру, помещенную в своеобразный водолазный колокол – трубу с поддувом аргона сверху, что позволило операторам быстро и эффективно достать испорченные топливные элементы.

Разумеется, инженерная сложность быстрого реактора сказывается на его стоимости, которая в настоящее время – когда быстрые реакторы находятся скорее в концептуальном поле, – существенно выше, чем у тепловых реакторов. Все процессы по замыканию ядерно-топливного цикла также достаточно дорогие: технологии имеются, они отработаны, отрабатываются и развиваются, но их ещё предстоит вывести на потоковый коммерческий уровень. К счастью, для России это – вопрос ближайших двух-трёх десятилетий.

Мягкая сила быстрых нейтронов

Бесспорное технологическое превосходство России в области замыкания ядерно-топливного цикла, очевидно, должно получить стратегическую реализацию на мировой арене. Россия может принять на себя бремя лидерства по созданию такой мировой инфраструктуры, которая позволила бы обеспечить равный доступ всех заинтересованных государств к атомной энергии, но при этом надежно гарантировала бы соблюдение требований режима нераспространения. В плане реализации этой инициативы предусмотрены следующие направления:

Создание международных центров по обогащению урана (МЦОУ), первый из которых располагается в Ангарске;

Формирование международных центров по переработке и хранению ОЯТ (не всё же облизываться на наши просторы);

Создание международных центров по подготовке квалифицированного персонала для АЭС и проведение совместных научно-исследовательских работ в области защищенных от несанкционированного распространения ядерных технологий.

По состоянию на сегодня наиболее разработанной частью выдвинутой программы стал пункт о создании МЦОУ: подобные центры функционируют как совместные коммерческие предприятия, не пользующиеся государственной поддержкой. В совет директоров подобных предприятий должны входить представители власти, сотрудники компаний ядерно-топливного цикла и эксперты МАГАТЭ, притом последние окажутся консультантами без права голоса, чьей целью будет верификация работы центра и сертификация отдельных его действий. Соответственно, к технологиям обогащения неядерные страны допускаться не будут, а это вопрос довольно серьёзный.

К сожалению, остальные положения инициативы по созданию глобальной инфраструктуры ядерной энергетики не получили содержательного наполнения. В связи с чем возникает естественный вопрос: есть ли гарантии того, что эти версии политической эксплуатации технического потенциала не окажутся забытыми фантазиями на бумаге?

Для выхода из создавшейся ситуации, для привлечения широкого круга развивающихся стран, заинтересованных в мирном использовании ядерной энергетики, для старта программы международных центров ядерно-топливного цикла необходимо наполнить эти предложения прогностико-исследовательским и научно-техническим содержаниями.

Привлечённые к крупным исследовательским проектам в сфере экономики ядерной энергетики небольшие и развивающиеся государства способны увидеть свою конкретную выгоду от участия в реализации упомянутых инициатив и понять, какие изменения необходимы в их национальных программах.

Признанный передовой уровень технологии быстрых реакторов в России - единственной стране, эксплуатирующей промышленный реактор этого типа в сочетании с опытом переработки ядерного топлива, позволит России в долговременной перспективе претендовать на роль одного из лидеров мировой ядерной энергетики.

Успешная реализация российских предложений по созданию глобальной ядерной инфраструктуры является важным фактором для будущего развития мировой энергетики, не говоря уже о российском месте в этом развитии. Воплощение российских предложений может со временем не только обеспечить безопасность глобальной ядерной энергетики и её практически бесконечную топливную самообеспеченность, но и перекроить ландшафт рынка электроэнергетики в целом: угроза дефицита всех видов ископаемого топлива, включая уран, на определённом этапе станет гораздо ближе и реальнее, чем может показаться.

В ответ на растущие цены на углеводороды в мире последние лет этак двадцать наблюдается обострение интереса к альтернативной энергетике. Однако есть ряд оснований полагать, что единственной вменяемой альтернативой традиционной тепловой генерации может быть только ядерная энергетика. О сравнении перспектив ядерной энергетики и возобновляемой генерации написаны очень серьёзные и толстые книги, которые, вкратце, говорят, что в перспективе ближайших десятилетий нам светят быстрые реакторы – и технологическое лидерство России.

Академик Ф. Митенков, научный руководитель ФГУП "Опытное конструкторское бюро машиностроения" им. И. И. Африкантова (г. Нижний Новгород).

Академик Федор Михайлович Митенков был удостоен премии "Глобальная энергия" 2004 года за разработку физико-технических основ и создание энергетических реакторов на быстрых нейтронах (см. "Наука и жизнь" №8, 2004 г.). Исследования, проведенные лауреатом, и их практическое воплощение в действующие реакторные установки БН-350, БН-600, строящуюся БН-800 и проектируемую БН-1800, открывают человечеству новое, перспективное направление развития атомной энергетики.

Белоярская АЭС с реактором БН-600.

Академик Ф. М. Митенков на церемонии вручения премии "Глобальная энергия" в июне 2004 года.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Принципиальная схема реактора на быстрых нейтронах БН-350.

Принципиальная схема быстрого энергетического реактора БН-600.

Центральный зал реактора БН-600.

Реактор на быстрых нейтронах БН-800 имеет электрическую мощность 880 МВт, тепловую 1,47 ГВт. При этом его конструкция обеспечивает полную безопасность как при нормальной работе, так и при любой мыслимой аварии.

Наука и жизнь // Иллюстрации

Потребление энергии - важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность и благосостояние населения любой страны. Рост энергопотребления всегда сопровождал развитие человеческого общества, но особенно стремительным он был на протяжении ХХ века: потребление энергии увеличилось почти в 15 раз, достигнув к его концу абсолютной величины около 9,5 млрд тонн нефтяного эквивалента (т.н.э.). Сжигание угля, нефти, природного газа обеспечивает около 80% мирового энергопотребления. В XXI веке его рост, несомненно, будет продолжаться, особенно в развивающихся странах, для которых экономическое развитие и повышение качества жизни населения неизбежно связаны со значительным увеличением количества потребляемой энергии, в первую очередь ее наиболее универсального вида - электричества. К середине XXI века прогнозируется удвоение мирового энергопотребления и утроение потребления электроэнергии.

Общая тенденция роста энергопотребления усиливает зависимость большинства стран от импорта нефти и природного газа, обостряет конкуренцию за доступ к источникам энергоресурсов, порождает угрозу глобальной безопасности. Одновременно возрастает озабоченность экологическими последствиями производства энергии, в первую очередь из-за опасности недопустимого загрязнения атмосферы выбросами продуктов сжигания углеводородного топлива.

Поэтому в не столь уж отдаленном будущем человечество будет вынуждено перейти на использование альтернативных "безуглеродных" технологий производства энергии, которые позволят в течение длительного времени надежно удовлетворять растущие потребности в энергии без недопустимых экологических последствий. Однако приходится признать, что известные на сегодня возобновляемые источники энергии - ветровой, солнечной, геотермальной, приливной и др. - по своим потенциальным возможностям не могут служить для крупномасштабного энергопроизводства (см. "Наука и жизнь" № 10, 2002 г. - Прим. ред. ). А весьма многообещающая технология управляемого термоядерного синтеза все еще находится на стадии исследований и создания демонстрационного ядерного реактора (см. "Наука и жизнь"№8, 2001 г. ,№9, 2001 г. - Прим. ред. ).

По мнению многих специалистов, к числу которых относится и автор настоящей статьи, реальным энергетическим выбором человечества в XXI веке станет широкое использование ядерной энергии на основе реакторов деления. Атомная энергетика могла бы уже сейчас взять на себя значительную часть прироста мировых потребностей в топливе и энергии. Сегодня она обеспечивает около 6% мирового потребления энергии, в основном электрической, где ее доля составляет около 18% (в России - около 16%).

Для более широкого использования ядерной энергии, с тем чтобы она стала основным базовым источником энергии уже в текущем столетии, необходимы несколько условий. Прежде всего, атомной энергетике нужно отвечать требованиям гарантированной безопасности для населения и окружающей среды, а природным ресурсам для производства ядерного топлива - обеспечивать функционирование "большой" атомной энергетики по меньшей мере в течение нескольких столетий. И, кроме того, по технико-экономические показателям атомная энергетика должна не уступать лучшим источникам энергии на углеводородном топливе.

Посмотрим, насколько современная атомная энергетика отвечает этим требованиям.

О гарантированной безопасности атомной энергетики

Вопросы безопасности атомной энергетики с момента ее зарождения рассматривались и достаточно эффективно решались системно и на научной основе. Однако в период ее становления все-таки возникали аварийные ситуации с недопустимыми выбросами радиоактивности, в том числе две крупномасштабные аварии: на АЭС "Три Майл Айленд" (США) в 1979 году и на Чернобыльской АЭС (СССР) в 1986-м. В связи с этим мировое сообщество ученых и специалистов-атомщиков под эгидой Международного агентства по атомной энергии (МАГАТЭ) разработало рекомендации, соблюдение которых практически исключает недопустимые воздействия на окружающую среду и население при любых физически возможных авариях на АЭС. Они, в частности, предусматривают: если в проекте с достоверностью не обосновано, что расплавление активной зоны реактора исключается, возможность такой аварии необходимо учитывать и доказывать, что предусмотренные в конструкции реактора физические барьеры гарантированно исключают недопустимые последствия для окружающей среды. Рекомендации МАГАТЭ вошли составной частью в национальные нормативы по безопасности атомной энергетики многих стран мира. Некоторые инженерные решения, обеспечивающие безопасность эксплуатации современных реакторов, описаны ниже на примере реакторов БН-600 и БН-800.

Ресурсная база для производства ядерного топлива

Специалистам-атомщикам известно, что существующая технология атомной энергетики, основанная на так называемых "тепловых" ядерных реакторах с водяным или графитовым замедлителем нейтронов, не может обеспечить развития крупномасштабной атомной энергетики. Это связано с низкой эффективностью использования природного урана в таких реакторах: используется только изотоп U-235, содержание которого в природном уране составляет всего лишь 0,72%. Поэтому долговременная стратегия развития "большой" атомной энергетики предполагает переход к прогрессивной технологии замкнутого топливного цикла, основанной на использовании так называемых быстрых ядерных реакторов и переработке топлива, выгруженного из реакторов атомных станций, для последующего возврата в энергетический цикл невыгоревших и вновь образовавшихся делящихся изотопов.

В "быстром" реакторе бoльшую часть актов деления ядерного топлива вызывают быстрые нейтроны с энергией более 0,1 МэВ (отсюда и название "быстрый" реактор). При этом в реакторе происходит деление не только очень редкого изотопа U-235, но и U-238 - основной составляющей природного урана (~99,3%), вероятность деления которого в спектре нейтронов "теплового реактора" очень низка. Принципиально важно, что в "быстром" реакторе при каждом акте деления ядер образуется большее количество нейтронов, которые могут быть использованы для интенсивного превращения U-238 в делящийся изотоп плутония Pu-239. Это превращение происходит в результате ядерной реакции:

Нейтронно-физические особенности быстрого реактора таковы, что процесс образования в нем плутония может иметь характер расширенного воспроизводства, когда в реакторе образуется вторичного плутония больше, чем выгорает первоначально загруженного. Процесс образования избыточного количества делящихся изотопов в ядерном реакторе получил название "бридинг" (от англ. breed - размножать). С этим термином связано принятое в мире название быстрых реакторов с плутониевым топливом - реакторы-бридеры, или размножители.

Практическая реализация процесса бридинга имеет принципиальное значение для будущего атомной энергетики. Дело в том, что такой процесс дает возможность практически полностью использовать природный уран и тем самым почти в сто раз увеличить "выход" энергии из каждой тонны добытого природного урана. Это открывает путь к практически неисчерпаемым топливным ресурсам атомной энергетики на длительную историческую перспективу. Поэтому общепризнано, что использование бридеров - необходимое условие создания и функционирования атомной энергетики большого масштаба.

После того как в конце 1940-х годов была осознана принципиальная возможность создания быстрых реакторов-размножителей, в мире начались интенсивные исследования их нейтронно-физических характеристик и поиски соответствующих инженерных решений. В нашей стране инициатором исследований и разработок по быстрым реакторам стал академик Украинской академии наук Александр Ильич Лейпунский, который до своей кончины в 1972 году был научным руководителем обнинского Физико-энергетического института (ФЭИ).

Инженерные сложности создания быстрых реакторов связаны с целым рядом присущих им особенностей. К их числу относятся: большая энергонапряженность топлива; необходимость обеспечить его интенсивное охлаждение; высокие рабочие температуры теплоносителя, элементов конструкции реактора и оборудования; радиационные повреждения конструкционных материалов, вызванные интенсивным облучением быстрыми нейтронами. Для решения этих новых научно-технических задач и отработки технологии быстрых реакторов потребовалось развитие крупномасштабной научно-исследовательской и опытно-экспериментальной базы с уникальными стендами, а также создание в 1960-1980-е годы целого ряда экспериментальных и демонстрационных энергетических реакторов этого типа в России, США, во Франции, в Великобритании и Германии. Примечательно, что во всех странах в качестве охлаждающей среды - теплоносителя - для быстрых реакторов был выбран натрий, несмотря на то, что он активно реагирует с водой и водяным паром. Решающими достоинствами натрия как теплоносителя стали его исключительно хорошие теплофизические свойства (высокая теплопроводность, большая теплоемкость, высокая температура кипения), низкие затраты энергии на циркуляцию, пониженное коррозионное воздействие на конструкционные материалы реактора, относительная простота его очистки в процессе эксплуатации.

Первый отечественный демонстрационный энергетический реактор на быстрых нейтронах БН-350 тепловой мощностью 1000 МВт был введен в строй в 1973 году на восточном побережье Каспийского моря (см. "Наука и жизнь" № 11, 1976 г. - Прим. ред. ). Он имел традиционную для атомной энергетики петлевую схему передачи теплоты и паротурбинный комплекс для преобразования тепловой энергии. Часть тепловой мощности реактора использовалась для выработки электроэнергии, остальная шла на опреснение морской воды. Одна из отличительных особенностей схемы этой и последующих реакторных установок с натриевым теплоносителем - наличие промежуточного контура передачи теплоты между реактором и пароводяным контуром, продиктованное соображениями безопасности.

Реакторная установка БН-350, несмотря на сложность ее технологической схемы, успешно работала с 1973 по 1988 год (на пять лет дольше проектного времени) в составе Мангышлакского энергетического комбината и завода опреснения морской воды в г. Шевченко (ныне - Актау, Казахстан).

Большая разветвленность натриевых контуров в реакторе БН-350 вызывала беспокойство, поскольку в случае их аварийной разгерметизации мог возникнуть пожар. Поэтому, не дожидаясь пуска реактора БН-350, в СССР началось проектирование более мощного быстрого реактора БН-600 интегральной конструкции, в котором натриевые трубопроводы большого диаметра отсутствовали и почти весь радиоактивный натрий первого контура был сосредоточен в корпусе реактора. Это позволило практически полностью исключить опасность разгерметизации первого натриевого контура, снизить пожарную опасность установки, повысить уровень радиационной безопасности и надежности реактора.

Реакторная установка БН-600 надежно работает с 1980 года в составе третьего энергоблока Белоярской АЭС. Сегодня это самый мощный из действующих в мире реакторов на быстрых нейтронах, который служит источником уникального эксплуатационного опыта и базой для натурной отработки усовершенствованных конструкционных материалов и топлива.

Во всех последующих проектах реакторов этого типа в России, так же как и в большинстве проектов коммерческих быстрых реакторов, разработанных за рубежом, используется интегральная конструкция.

Обеспечение безопасности быстрых реакторов

Уже при проектировании первых энергетических реакторов на быстрых нейтронах большое внимание уделялось вопросам обеспечения безопасности как при их нормальной работе, так и при аварийных ситуациях. Направления поиска соответствующих проектных решений определялись требованием исключить недопустимые воздействия на окружающую среду и население за счет внутренней самозащищенности реактора, применения эффективных систем локализации потенциально возможных аварий, ограничивающих их последствия.

Самозащищенность реактора основана в первую очередь на действии отрицательных обратных связей, стабилизирующих процесс деления ядерного топлива при повышении температуры и мощности реактора, а также на свойствах используемых в реакторе материалов. Для иллюстрации внутренне присущей быстрым реакторам безопасности укажем некоторые их особенности, связанные с использованием в них натриевого теплоносителя. Высокая температура кипения натрия (883oС при нормальных физических условиях) позволяет поддерживать в корпусе реактора давление, близкое к атмосферному. Это упрощает конструкцию реактора и повышает его надежность. Корпус реактора не подвергается в процессе работы большим механическим нагрузкам, поэтому его разрыв еще менее вероятен, чем в существующих реакторах с водой под давлением, где он относится к классу гипотетических. Но даже такая авария в быстром реакторе не представляет опасности с точки зрения надежного охлаждения ядерного топлива, поскольку корпус окружен герметичным страховочным кожухом, а объем возможной утечки натрия в него незначителен. Разгерметизация трубопроводов с натриевым теплоносителем в быстром реакторе интегральной конструкции также не приводит к опасной ситуации. Поскольку теплоемкость натрия достаточно велика, даже при полном прекращении отвода тепла в пароводяной контур температура теплоносителя в реакторе будет повышаться со скоростью примерно 30 градусов в час. При нормальной работе температура теплоносителя на выходе из реактора составляет 540oС. Значительный запас температуры до закипания натрия дает резерв времени, достаточный, чтобы принять меры, ограничивающие последствия подобной маловероятной аварии.

В проекте реактора БН-800, в котором использованы основные инженерные решения БН-600, приняты дополнительные меры, обеспечивающие сохранение герметичности реактора и исключающие недопустимые воздействия на окружающую среду, даже при гипотетической крайне маловероятной аварии с расплавлением активной зоны реактора.

Блочный щит управления реактора БН-600.

Многолетняя эксплуатация быстрых реакторов подтвердила достаточность и эффективность предусмотренных мер обеспечения безопасности. За 25 лет эксплуатации реактора БН-600 не было ни аварий со сверхнормативными выбросами радиоактивности, ни облучения персонала и тем более местного населения. Быстрые реакторы продемонстрировали высокую устойчивость в работе, ими легко управлять. Освоена технология натриевого теплоносителя, которая эффективно нейтрализует его пожароопасность. Утечки и горение натрия персонал уверенно обнаруживает, а их последствия надежно ликвидирует. В последние годы все более широкое применение в проектах быстрых реакторов находят системы и устройства, способные перевести реактор в безопасное состояние без вмешательства персонала и подвода энергии со стороны.

Технико-экономические показатели быстрых реакторов

Особенности натриевой технологии, повышенные меры безопасности, консервативный выбор проектных решений первых реакторов - БН-350 и БН-600 стали причинами более высокой их стоимости по сравнению с реакторами, охлаждаемыми водой. Однако их создавали главным образом для проверки работоспособности, безопасности и надежности быстрых реакторов. Эта задача и была решена их успешной эксплуатацией. При создании следующей реакторной установки - БН-800, предназначенной для массового использования в атомной энергетике, больше внимания уделили технико-экономическим характеристикам, и в результате по удельным капитальным затратам удалось существенно приблизиться к ВВЭР-1000 - основному типу отечественных энергетических реакторов на медленных нейтронах.

К настоящему времени можно считать установленным, что быстрые реакторы с натриевым теплоносителем имеют большой потенциал дальнейшего технико-экономического совершенствования. К основным направлениям улучшения их экономических характеристик при одновременном повышении уровня безопасности относятся: повышение единичной мощности реактора и основных компонентов энергоблока, совершенствование конструкции основного оборудования, переход на закритические параметры пара с целью увеличения термодинамического кпд цикла преобразования тепловой энергии, оптимизация системы обращения со свежим и отработавшим топливом, увеличение глубины выгорания ядерного топлива, создание активной зоны с высоким внутренним коэффициентом воспроизводства (КВ) - до 1, увеличение срока службы до 60 лет и более.

Совершенствование отдельных видов оборудования, как показали конструкторские проработки, выполненные в ОКБМ, может оказать весьма существенное влияние на улучшение технико-экономических показателей и реакторной установки, и энергоблока в целом. Например, проработки по совершенствованию системы перегрузки перспективного реактора БН-1800 показали возможность значительного уменьшения металлоемкости этой системы. Замена модульных парогенераторов на корпусные оригинальной конструкции позволяет значительно уменьшить их стоимость, а также площадь, объем и материалоемкость парогенераторного отделения энергоблока.

Как влияет мощность реактора и технологическое совершенствование оборудования на металлоемкость и уровень капитальных затрат, можно видеть из таблицы.

Совершенствование быстрых реакторов, естественно, потребует определенных усилий со стороны промышленных предприятий, научных и проектных организаций. Так, для увеличения глубины выгорания ядерного топлива предстоит разработать и освоить производство конструкционных материалов активной зоны реактора, более стойких к нейтронному облучению. Работы в этом направлении в настоящее время ведутся.

Быстрые реакторы могут служить не только для получения энергии. Потоки нейтронов высокой энергии способны эффективно "сжигать" наиболее опасные долгоживущие радионуклиды, образующиеся в отработавшем ядерном топливе. Это имеет принципиальное значение для решения проблемы обращения с радиоактивными отходами атомной энергетики. Дело в том, что период полураспада некоторых радионуклидов (актиноидов) намного превышает научно обоснованные сроки стабильности геологических формаций, которые рассматриваются в качестве мест окончательного захоронения радиоактивных отходов. Поэтому, применив замкнутый топливный цикл с выжиганием актиноидов и трансмутацией долгоживущих продуктов деления в короткоживущие, можно радикально решить проблему обезвреживания отходов атомной энергетики и многократно уменьшить объем радиоактивных отходов, подлежащих захоронению.

Перевод атомной энергетики, наряду с "тепловыми" реакторами, на быстрые реакторы-бридеры, а также на замкнутый топливный цикл позволит создать безопасную энергетическую технологию, в полной мере отвечающую требованиям устойчивого развития человеческого общества.

Загрузка...