Про наши гаджеты. Понятные инструкции для всех

Чем образуется магнитное поле. Магнитное поле, характеристика магнитного поля

Тема: Магнитное поле

Подготовил: Байгарашев Д.М.

Проверила: Габдуллина А.Т.

Магнитное Поле

Если два параллельно расположенных проводника подсоединить к источнику тока так, чтобы по ним прошел электрический ток, то в зависимости от направления тока в них проводники либо отталкиваются, либо притягиваются.

Объяснение этого явления возможно с позиции возникновения вокруг проводников особого вида материи - магнитного поля.

Силы, с которыми взаимодействуют проводники с током, называются магнитными .

Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.

История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть "магнетиками". Любой магнит в форме стержня или подковы имеет два торца, которые называются полюсами; именно в этом месте сильнее всего и проявляются его магнитные свойства. Если подвесить магнит на нитке, один полюс всегда будет указывать на север. На этом принципе основан компас. Обращенный на север полюс свободно висящего магнита называется северным полюсом магнита (N). Противоположный полюс называется южным полюсом (S).

Магнитные полюсы взаимодействуют друг с другом: одноименные полюсы отталкиваются, а разноименные - притягиваются. Аналогично концепции электрического поля, окружающего электрический заряд, вводят представление о магнитном поле вокруг магнита.

В 1820 г. Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле. Если взять рамку с током, то внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее ориентирующее действие, т. е. существует такое положение рамки, при котором внешнее магнитное поле оказывает на нее максимальное вращающее действие, и существует положение, когда вращающий момент сил равен нулю.

Магнитное поле в любой точке можно охарактеризовать вектором В, который называетсявектором магнитной индукции или магнитной индукцией в точке.

Магнитная индукция В - это векторная физическая величина, являющаяся силовой характеристикой магнитного поля в точке. Она равна отношению максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на ее площадь:

За направление вектора магнитной индукции В принимается направление положительной нормали к рамке, которое связано с током в рамке правилом правого винта, при механическом моменте, равном нулю.

Точно так же, как изображали линии напряженности электрического поля, изображают линии индукции магнитного поля. Линия индукции магнитного поля - воображаемая линия, касательная к которой совпадает с направлением В в точке.

Направления магнитного поля в данной точке можно определить еще как направление, которое указывает

северный полюс стрелки компаса, помещенный в эту точку. Считают, что линии индукции магнитного поля направлены от северного полюса к южному.

Направление линий магнитной индукции магнитного поля, созданного электрическим током, который течет по прямолинейному проводнику, определяется правилом буравчика или правого винта. За направление линий магнитной индукции принимается направление вращения головки винта, которое обеспечивало бы поступательное его движение по направлению электрического тока (рис. 59).

где n 01 = 4Пи 10 -7 В с/(А м). - магнитная постоянная, R - расстояние, I - сила тока в проводнике.

В отличие от линий напряженности электростатического поля, которые начинаются на положительном заряде и оканчиваются на отрицательном, линии индукции магнитного поля всегда замкнуты. Магнитного заряда аналогично электрическому заряду не обнаружено.

За единицу индукции принимается одна тесла (1 Тл) - индукция такого однородного магнитного поля, в котором на рамку площадью 1 м 2 , по которой течет ток в 1 А, действует максимальный вращающий механический момент сил, равный 1 Н м.

Индукцию магнитного поля можно определить и по силе, действующей на проводник с током в магнитном поле.

На проводник с током, помещенный в магнитное поле, действует сила Ампера, величина которой определяется следующим выражением:

где I - сила тока в проводнике, l - длина проводника, В - модуль вектора магнитной индукции, а - угол между вектором и направлением тока.

Направление силы Ампера можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца располагаем по направлению тока в проводнике, то отогнутый большой палец показывает направление силы Ампера.

Учитывая, что I = q 0 nSv, и подставляя это выражение в (3.21), получим F = q 0 nSh/B sin a . Число частиц (N) в заданном объеме проводника равно N = nSl, тогда F = q 0 NvB sin a .

Определим силу, действующую со стороны магнитного поля на отдельную заряженную частицу, движущуюся в магнитном поле:

Эту силу называют силой Лоренца (1853-1928). Направление силы Лоренца можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца показывали направление движения положительного заряда, большой отогнутый палец покажет направление силы Лоренца.

Сила взаимодействия между двумя параллельными проводниками, по которым текут токи I 1 и I 2 равна:

где l - часть проводника, находящаяся в магнитном поле. Если токи одного направления, то проводники притягиваются (рис. 60), если противоположного направления - отталкиваются. Силы, действующие на каждый проводник, равны по модулю, противоположны по направлению. Формула (3.22) является основной для определения единицы силы тока 1 ампер (1 А).

Магнитные свойства вещества характеризует скалярная физическая величина - магнитная проницаемость, показывающая во сколько раз индукция В магнитного поля в веществе, полностью заполняющем поле, отличается по модулю от индукции В 0 магнитного поля в вакууме:

По своим магнитным свойствам все вещества делятся на диамагнитные, парамагнитные иферромагнитные .

Рассмотрим природу магнитных свойств веществ.

Электроны в оболочке атомов вещества движутся по различным орбитам. Для упрощения считаем эти орбиты круговыми, и каждый электрон, обращающийся вокруг атомного ядра, можно рассматривать как круговой электрический ток. Каждый электрон, как круговой ток, создает магнитное поле, которое назовем орбитальным. Кроме того, у электрона в атоме есть собственное магнитное поле, называемое спиновым.

Если при внесении во внешнее магнитное поле с индукцией В 0 внутри вещества создается индукция В < В 0 , то такие вещества называются диамагнитными (n < 1).

В диамагнитных материалах при отсутствии внешнего магнитного поля магнитные поля электронов скомпенсированы, и при внесении их в магнитное поле индукция магнитного поля атома становится направленной против внешнего поля. Диамагнетик выталкивается из внешнего магнитного поля.

У парамагнитных материалов магнитная индукция электронов в атомах полностью не скомпенсирована, и атом в целом оказывается подобен маленькому постоянному магниту. Обычно в веществе все эти маленькие магниты ориентированы произвольно, и суммарная магнитная индукция всех их полей равна нулю. Если поместить парамагнетик во внешнее магнитное поле, то все маленькие магниты - атомы повернутся во внешнем магнитном поле подобно стрелкам компаса и магнитное поле в веществе усиливается (n >= 1).

Ферромагнитными называются такие материалы, в которых n " 1. В ферромагнитных материалах создаются так называемые домены, макроскопические области самопроизвольного намагничивания.

В разных доменах индукции магнитных полей имеют различные направления (рис. 61) и в большом кристалле

взаимно компенсируют друг друга. При внесении ферромагнитного образца во внешнее магнитное поле происходит смещение границ отдельных доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается.

С увеличением индукции внешнего поля В 0 возрастает магнитная индукция намагниченного вещества. При некоторых значениях В 0 индукция прекращает резкий рост. Это явление называется магнитным насыщением.

Характерная особенность ферромагнитных материалов - явление гистерезиса, которое заключается в неоднозначной зависимости индукции в материале от индукции внешнего магнитного поля при его изменении.

Петля магнитного гистерезиса - замкнутая кривая (cdc`d`c), выражающая зависимость индукции в материале от амплитуды индукции внешнего поля при периодическом достаточно медленном изменении последнего (рис. 62).

Петля гистерезиса характеризуется следующими величинами B s , B r , B c . B s - максимальное значение индукции материала при В 0s ; В r - остаточная индукция, равная значению индукции в материале при уменьшении индукции внешнего магнитного поля от B 0s до нуля; -В с и В с - коэрцитивная сила - величина, равная индукции внешнего магнитного поля, необходимого для изменения индукции в материале от остаточной до нуля.

Для каждого ферромагнетика существует такая температура (точка Кюри (Ж. Кюри, 1859-1906), выше которой ферромагнетик утрачивает свои ферромагнитные свойства.

Существует два способа приведения намагниченного ферромагнетика в размагниченное состояние: а) нагреть выше точки Кюри и охладить; б) намагничивать материал переменным магнитным полем с медленно убывающей амплитудой.

Ферромагнетики, обладающие малой остаточной индукцией и коэрцитивной силой, называются магнитомягкими. Они находят применение в устройствах, где ферромагнетику приходится часто перемагничиваться (сердечники трансформаторов, генераторов и др.).

Магнитожесткие ферромагнетики, обладающие большой коэрцитивной силой, применяются для изготовления постоянных магнитов.

Магнит - это тело, которое образует вокруг себя магнитное поле.

Сила, созданная магнитом, будет действовать на определенные металлы: железо, никель и кобальт. Предметы из этих металлов притягиваются магнитом.
(спичка и пробка не притягиваются, гвоздь только к правой половине магнита, скрепка - к любому месту)

Существуют две области, где сила притяжения максимальна. Они называются полюсами. Если магнит подвесить на тонкой нитке, то он развернется определенным образом. Один конец всегда будет указывать на север, а второй - на юг. Поэтому один полюс называют северным, а другой - южным.

Можно наглядно рассмотреть действие магнитного поля, образованного вокруг магнита. Поместим магнит на поверхность, на которую предварительно насыпали металлические опилки. Под действием магнитного поля опилки расположатся в виде эллипсоподобных кривых. По виду этих кривых, можно представить, как располагаются в пространстве линии магнитного поля. Их направление принято обозначать с севера на юг.

Если мы возьмем два одинаковых магнита и попытаемся приблизить их полюсами, то выясним, что разные полюса притягиваются, а одинаковые - отталкиваются.

Наша Земля также имеет магнитное поле, называемое магнитным полем Земли. Стрелка северным концом всегда показывает на север. Следовательно, северный географический полюс Земли является южным магнитным полюсом, так как противоположные магнитные полюса притягиваются. Аналогично, южный географический полюс является северным магнитным полюсом.


Стрелка компаса северным концом всегда показывает на север, так как притягивается южным магнитным полюсом Земли.

Если поместить компас под проволоку, которая натянута в направлении с севера на юг и по которой течет ток, то мы увидим, что магнитная стрелка отклонится. Это доказывает, что электрический ток создает вокруг себя магнитное поле.

Если расположить несколько компасов под проволокой, по которой течет электрический ток, то мы увидим, что все стрелки отклонятся на одинаковый угол. Это значит, что магнитное поле, создаваемое проволокой, одинаково на разных участках. Поэтому можно сделать вывод, что линии магнитного поля для каждого проводника имеют вид концентрических окружностей.

Направление линий магнитного поля можно определить с помощью правила правой руки. Для этого необходимо мысленно обхватить правой рукой проводник с электрическим током таким образом, чтобы вытянутый большой палец правой руки показывал направление электрического тока, тогда согнутые пальцы покажут направление линий магнитного поля.

Если мы скрутим металлическую проволоку в спираль и пустим по ней электрический ток, то магнитные поля каждого отдельного витка суммируются в общее поле спирали.

Действие магнитного поля спирали аналогично действию магнитного поля постоянного магнита. Этот принцип лег в основу создания электромагнита. У него, как и у постоянного магнита, есть южный и северный полюса. Северный полюс находится там, откуда выходят линии магнитного поля.

Сила постоянного магнита не изменяется с течением времени. У электромагнита это по-другому. Изменить силу электромагнита можно тремя способами.

Первый способ. Поместим внутрь спирали металлический сердечник. При этом действия магнитного поля сердечника и магнитного поля спирали суммируются.

Второй способ. Увеличим количество витков спирали. Чем больше витков у спирали, тем больше действие силы магнитного поля.

Третий способ. Увеличим силу электрического тока, который протекает в спирали. Магнитные поля отдельных витков возрастут, следовательно, суммарное магнитное поле спирали также усилится.


Громкоговоритель

В устройство громкоговорителя входит электромагнит и постоянный магнит. Электромагнит, который связан с мембраной громкоговорителя, надевается на жестко закрепленный постоянный магнит. При этом мембрана остается подвижной. Пропустим через электромагнит переменный электрический ток, вид которого зависит от звуковых колебаний. Так как изменяется электрический ток, то в электромагните изменяется действие магнитного поля.

Вследствие этого электромагнит будет притягиваться или отталкиваться от постоянного магнита с различной силой. Причем мембрана громкоговорителя будет совершать точно такие колебания, как и электромагнит. Таким образом, то, что было сказано в микрофон, мы услышим через громкоговоритель.


Звонок

Электрический дверной звонок можно отнести к разряду электрических реле. Причиной прерывающегося звукового сигнала являются периодические замыкания и размыкания электрической цепи.

При нажатии кнопки звонка электрическая цепь замыкается. Язычок звонка притягивается электромагнитом и ударяет в колокольчик. При этом язычок размыкает электрическую цепь. Ток перестает течь, электромагнит не действует и язычок возвращается в исходное положение. Электрическая цепь вновь замыкается, язычок снова притягивается электромагнитом и ударяет в колокольчик. Этот процесс будет продолжаться до тех пор, пока мы нажимаем на кнопку звонка.


Электромотор

Установим свободно вращающуюся магнитную стрелку перед электромагнитом и раскрутим ее. Мы можем поддерживать это движение, если будем включать электромагнит в тот момент, когда магнитная стрелка поворачивается одним и тем же полюсом к электромагниту.

Силы притяжения электромагнита достаточно, чтобы вращательное движение стрелки не прекращалось.

(на картинке магнит получает импульс всякий раз, когда красная стрелка находится рядом и нажимается кнопка. Если нажать кнопку, когда рядом зеленая стрелка, электромагнит останавливается)

Этот принцип заложен в основу электродвигателя. Только в нем вращается не магнитная стрелка, а электромагнит, называющийся якорем, в статично закрепленном подковообразном магните, который называется статором. Из-за повторяющихся замыканий и размыканий цепи, электромагнит, т.е. якорь, будет непрерывно вращаться.

Электрический ток попадает на якорь посредством двух контактов, представляющих собой два изолированных полукольца. Это приводит к тому, что электромагнит постоянно меняет полярность. При нахождении разнополярных полюсов один против другого, двигатель начинает замедлять вращение. Но в этот момент электромагнит меняет полярность, и теперь один против другого находятся одинаковые полюса. Они отталкиваются, и мотор продолжает вращение.

Генератор

Подключим к концам спирали вольтметр и начнем раскачивать перед ее витками постоянный магнит. При этом вольтметр покажет наличие напряжения. Из этого можно заключить, что на электропроводник влияет изменяющееся магнитное поле.

Из этого следует закон электроиндукции: на концах индукционной катушки будет существовать напряжение до тех пор, пока катушка находится в изменяющемся магнитном поле.

Чем больше витков у индукционной катушки, тем большее напряжение возникает на ее концах. Напряжение можно увеличить, усилив магнитное поле или заставив его быстрее меняться. Металлический сердечник, вставленный внутрь индукционной катушки, увеличивает индукционное напряжение, так как магнитное поле усиливается из-за намагничивания сердечника.
(магнитом начинают сильнее махать перед катушкой, в результате чего стрелка вольтметра отклоняется намного больше)

Генератор - это противоположность электромотора. Якорь, т.е. электромагнит, вращается в магнитном поле постоянного магнита. Из-за вращения якоря действующее на него магнитное поле постоянно меняется. Вследствие чего изменяется возникшее индукционное напряжение. Во время полного оборота якоря напряжение половину времени будет положительно и половину - отрицательно. Примером этого является ветряной генератор, который создает переменное напряжение.


Трансформатор

Согласно закону индукции напряжение возникает, если меняется магнитное поле в индукционной катушке. Но магнитное поле катушки будет меняться только в том случае, если в ней возникает переменное напряжение.

Магнитное поле меняется от нуля до конечной величины. Если подключить катушку к источнику напряжения, то возникшее вследствие этого переменное магнитное поле, создаст кратковременное индукционное напряжение, которое будет противодействовать основному напряжению. Чтобы наблюдать возникновение индукционного напряжения, необязательно использовать две катушки. Это можно сделать и с одной катушкой, но тогда такой процесс называется самоиндукцией. Напряжение в катушке достигает своего максимума через некоторое время, когда магнитное поле перестанет изменяться и станет постоянным.

Таким же образом меняется магнитное поле, если мы отключаем катушку от источника напряжения. В этом случае, тоже возникает явление самоиндукции, которое противодействует падающему напряжению. Поэтому напряжение падает до нуля не мгновенно, а с определенным запозданием.

Если мы постоянно подключаем и отключаем источник напряжения к катушке, то магнитное поле вокруг нее будет постоянно меняться. Одновременно возникает и переменное индукционное напряжение. Теперь вместо этого, подключим катушку к источнику переменного напряжения. Спустя некоторое время возникает переменное индукционное напряжение.

Подключим первую катушку к источнику переменного напряжения. Благодаря металлическому сердечнику возникшее переменное магнитное поле будет действовать и на вторую катушку. Это означает, что переменное напряжение можно передать из одной цепи электрического тока в другую, даже если эти цепи не будут связаны одна с другой.

Если мы возьмем две одинаковые по параметрам катушки, то во второй мы можем получить такое же напряжение, что действует на первую катушку. Это явление используется в трансформаторах. Только целью трансформатора является создать во второй катушке другое напряжение, отличное от первой. Для этого вторая катушка должна иметь большее или меньшее количество витков.

Если в первой катушке было 1000 витков, а во второй - 10, то напряжение во второй цепи будет составлять лишь сотую часть от напряжения в первой. Зато сила тока повышается практически в сто раз. Поэтому трансформаторы высокого напряжения необходимы для создания большой силы тока.

1

В данной статье приведены результаты исследований векторных и скалярных магнитных полей постоянных магнитов и определение их распространения.

постоянный магнит

электромагнит

векторное магнитное поле

скалярное магнитное поле.

2. Борисенко А.И., Тарапов И.Е. Векторный анализ и начала тензорного исчисления. – М.: Высшая школа, 1966.

3. Кумпяк Д.Е. Векторный и тензорный анализ: учебное пособие. – Тверь: Тверской государственный университет, 2007. – 158 с.

4. Мак-Коннел А.Дж. Введение в тензорный анализ с приложениями к геометрии, механике и физике. – М.: Физматлит, 1963. – 411 с.

5. Борисенко А.И., Тарапов И.Е. Векторный анализ и начала тензорного исчисления. – 3-е изд. – М.: Высшая школа, 1966.

Постоянные магниты. Постоянное магнитное поле.

Магнит - это тела, обладающие способностью притягивать железные и стальные предметы и отталкивать некоторые другие благодаря действию своего магнитного поля. Силовые линии магнитного поля проходят с южного полюса магнита, а выходят с северного полюса (рис. 1).

Рис. 1. Магнит и силовые линии магнитного поля

Постоянный магнит - изделие из магнитотвёрдого материала с высокой остаточной магнитной индукцией, сохраняющее состояние намагниченности в течение длительного времени. Постоянные магниты изготавливаются различной формы и применяются в качестве автономных (не потребляющих энергии) источников магнитного поля (рис. 2).

Электромагнит - устройство, создающее магнитное поле при прохождении электрического тока. Обычно электромагнит состоит из обмотки иферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.

Рис. 2. Постоянный магнит

В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.

Постоянные магниты, изготовленные из магнетита, применялись в медицине с древнейших времен. Царица Египта Клеопатра носила магнитный амулет.

В древнем Китае в «Императорской книге по внутренней медицине» затрагивался вопрос применения магнитных камней для коррекции в теле энергии Ци - «живой силы».

В первые теорию магнетизма разработал французский физик Андре Мари Ампер. Согласно его теории намагниченность железа объясняется существованием электрических токов, которые циркулируют внутри вещества. Свои первые сообщения о результатах опытов Ампер сделал на заседание Парижской академии Наук осенью 1820 года. Понятие “магнитное поле” в физику ввел английский физик Майкл Фарадей. Магниты взаимодействуют посредством магнитного поля, он же ввел понятие магнитных силовых линий.

Векторное магнитное поле

Векторное поле - это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке. Например, вектор скорости ветра в данный момент времени изменяется от точки к точке и может быть описан векторным полем (рис. 3).

Скалярное магнитное поле

Если каждой точке М заданной области пространства (чаще всего размерности 2 или 3) поставлено в соответствие некоторое (обычно - действительное) число u, то говорят, что в этой области задано скалярное поле. Другими словами, скалярное поле - это функция, отображающая Rn в R (скалярная функция точки пространства).

Геннадий Васильевич Николаев по простому рассказывает, показывает и на простых опытах доказывает существование второго типа магнитного поля, которое наука по странной причине не нашла. Со времен Ампера еще было предположение, что оно существует. Открытое Николаевым поле он назвал скалярным, но его еще частенько называют его именем. Николаев привел электромагнитные волны к полной аналогии с обычными механическими волнами. Сейчас физика рассматривает электромагнитные волны, как исключительно поперечные, но Николаев уверен и доказывает, что они так же и продольные или скалярные и это логично, как может вперед распространяться волна, не имея прямого давления, это просто абсурдно. По мнению ученого, наукой продольное поле было скрыто специально, возможно в процессе редактирование теорий и учебников. Сделано это с простым умыслом и согласовано с другими урезаниями.

Рис. 3. Векторное магнитное поле

Первое урезание, которое сделали это отсутствие эфира. Почему?! Потому, что эфир это энергия, или среда, которая находится под давлением. И это давление, если правильно организовать процесс можно использовать как бесплатный источник энергии!!! Второе урезание это убрали продольную волну, это как следствие, что если эфир это источник давления, то есть энергии, то если в нем складывать только поперечные волны, то никакой свободной или бесплатной энергии получить нельзя, нужна обязательно продольная волна.

Тогда встречное наложение волн дает возможность откачивание давления эфира. Часто эту технологию называют нулевой точкой, что в общем правильно. Именно на границе соединения плюса и минуса (повышенного и пониженного давления), при встречном движении волн можно получить так называемую зону Блоха или по простому провал среды (эфира), куда будет привлечена дополнительная энергия среды.

Работа представляет собой попытку практического повторения некоторых опытов описанных в книге Г.В.Николаева “Современная электродинамика и причины ее парадоксальности” и воспроизведение генератора и мотора Стефана Маринова, насколько это возможно в домашних условиях.

Опыт Г.В. Николаева с магнитами: Использовались два круглых магнита от динамиков

Два плоских расположенных на плоскости разноименными полюсами магнита. Притягиваются друг к другу (рис. 4), между тем, как при перпендикулярном расположении их (вне зависимости от ориентации полюсов) сила притяжения отсутствует (присутствует только крутящий момент) (рис. 5).

Теперь разрежем магниты посередине и соединим попарно разными полюсами, образовав магниты первоначального размера (рис. 6).

При расположении этих магнитов в одной плоскости (рис. 7) они вновь будут, например, притягиваться друг к другу, между тем как при перпендикулярном расположении они будут уже отталкиваться (рис. 8). В последнем случае продольные силы, действующие по линии разреза одного магнита, являются реакцией на поперечные силы, действующие на боковые поверхности другого магнита,и наоборот. Существование продольной силы противоречит законам электродинамики. Эта сила является результатом действия скалярного магнитного поля, присутствующего в месте разреза магнитов. Такой составной магнит и называется siberian colia.

Магнитная яма это явление, когда векторное магнитное поле отталкивает, а скалярное магнитное поле притягивает и между ними рождается расстояние.

Библиографическая ссылка

Жангисина Г.Д., Сыздыкбеков Н.Т., Жанбиров Ж.Г., Сагынтай М., Мухтарбек Е.К. ПОСТОЯННЫЕ МАГНИТЫ И ПОСТОЯННЫЕ МАГНИТНЫЕ ПОЛЯ // Успехи современного естествознания. – 2015. – № 1-8. – С. 1355-1357;
URL: http://natural-sciences.ru/ru/article/view?id=35401 (дата обращения: 05.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Наряду с электризующимися трением кусочками янтаря постоянные магниты были для древних людей первым материальным свидетельством электромагнитных явлений (молнии на заре истории определенно относили к сфере проявления нематериальных сил). Объяснение природы ферромагнетизма всегда занимало пытливые умы ученых, однако и в настоящее время физическая природа постоянной намагниченности некоторых веществ, как природных, так и искусственно созданных, еще не до конца раскрыта, оставляя немалое поле деятельности для современных и будущих исследователей.

Традиционные материалы для постоянных магнитов

Они стали активно использоваться в промышленности, начиная с 1940 года с появления сплава алнико (AlNiCo). До этого постоянные магниты из различных сортов стали применялись лишь в компасах и магнето. Алнико сделал возможным замену на них электромагнитов и применение их в таких устройствах, как двигатели, генераторы и громкоговорители.

Это их проникновение в нашу повседневную жизнь получило новый импульс с созданием ферритовых магнитов, и с тех пор постоянные магниты стали обычным явлением.

Революция в магнитных материалах началась около 1970 года, с созданием самарий-кобальтового семейства жестких магнитных материалов с доселе невиданной плотностью магнитной энергии. Затем было открыто новое поколение редкоземельных магнитов на основе неодима, железа и бора с гораздо более высокой плотностью магнитной энергии, чем у самарий-кобальтовых (SmCo) и с ожидаемо низкой стоимостью. Эти две семьи редкоземельных магнитов имеют такие высокие плотности энергии, что они не только могут заменить электромагниты, но использоваться в областях, недоступных для них. Примерами могут служить крошечный шаговый двигатель на постоянных магнитах в наручных часах и звуковые преобразователи в наушниках типа Walkman.

Постепенное улучшение магнитных свойств материалов представлено на диаграмме ниже.

Неодимовые постоянные магниты

Они представляют новейшее и наиболее значительное достижение в этой области на протяжении последних десятилетий. Впервые об их открытии было объявлено почти одновременно в конце 1983 года специалистами по металлам компаний Sumitomo и General Motors. Они основаны на интерметаллическом соединении NdFeB: сплаве неодима, железа и бора. Из них неодим является редкоземельным элементом, добываемым из минерала моназита.

Огромный интерес, которые вызвали эти постоянные магниты, возникает потому, что в первый раз был получен новый магнитный материал, который не только сильнее, чем у предыдущего поколения, но является более экономичным. Он состоит в основном из железа, которое намного дешевле, чем кобальт, и из неодима, являющегося одним из наиболее распространенных редкоземельных материалов, запасы которого на Земле больше, чем свинца. В главных редкоземельных минералах моназите и бастанезите содержится в пять-десять раз больше неодима, чем самария.

Физический механизм постоянной намагниченности

Чтобы объяснить функционирование постоянного магнита, мы должны заглянуть внутрь его до атомных масштабов. Каждый атом имеет набор спинов своих электронов, которые вместе формируют его магнитный момент. Для наших целей мы можем рассматривать каждый атом как небольшой полосовой магнит. Когда постоянный магнитразмагничен (либо путем нагрева его до высокой температуры, либо внешним магнитным полем), каждый атомный момент ориентирован случайным образом (см. рис. ниже) и никакой регулярности не наблюдается.

Когда же он намагничен в сильном магнитном поле, все атомные моменты ориентируются в направлении поля и как бы сцепляются «в замок» друг с другом (см. рис. ниже). Это сцепление позволяет сохранить поле постоянного магнита при удалении внешнего поля, а также сопротивляться размагничиванию при изменении его направления. Мерой силы сцепления атомных моментов является величина коэрцитивной силы магнита. Подробнее об этом позже.

При более глубоком изложении механизма намагничивания оперируют не понятиями атомных моментов, а используют представления о миниатюрных (порядка 0,001 см) областях внутри магнита, изначально обладающих постоянной намагниченностью, но ориентированных при отсутствии внешнего поля случайным образом, так что строгий читатель при желании может отнести вышеизложенный физический механизм не к магниту в целом. а к отдельному его домену.

Индукция и намагниченность

Атомные моменты суммируются и образуют магнитный момент всего постоянного магнита, а его намагниченность M показывает величину этого момента на единицу объема. Магнитная индукция B показывает, что постоянный магнит является результатом внешнего магнитного усилия (напряженности поля) H, прикладываемого при первичном намагничивании, а также внутренней намагниченности M, обусловленной ориентацией атомных (или доменных) моментов. Ее величина в общем случае задаётся формулой:

B = µ 0 (H + M),

где µ 0 является константой.

В постоянном кольцевом и однородном магните напряженность поля H внутри него (при отсутствии внешнего поля) равна нулю, так как по закону полного тока интеграл от нее вдоль любой окружности внутри такого кольцевого сердечника равен:

H∙2πR = iw=0 , откуда H=0.

Следовательно, намагниченность в кольцевом магните:

В незамкнутом магните, например, в том же кольцевом, но с воздушным зазором шириной l заз в сердечнике длиной l сер, при отсутствии внешнего поля и одинаковой индукции B внутри сердечника и в зазоре по закону полного тока получим:

H сер l сер + (1/ µ 0)Bl заз = iw=0.

Поскольку B = µ 0 (H сер + М сер), то, подставляя ее выражение в предыдущее, получим:

H сер (l сер + l заз) + М сер l заз =0,

H сер = ─ М сер l заз (l сер + l заз).

В воздушном зазоре:

H заз = B/µ 0 ,

причем B определяется по заданной М сер и найденной H сер.

Кривая намагничивания

Начиная с ненамагниченного состояния, когда Н увеличивается от нуля, вследствие ориентации всех атомных моментов по направлению внешнего поля быстро увеличиваются М и B, изменяясь вдоль участка «а» основной кривой намагничивания (см. рисунок ниже).

Когда выровнены все атомные моменты, М приходит к своему значению насыщения, и дальнейшее увеличение В происходит исключительно из-за приложенного поля (участок b основной кривой на рис. ниже). При уменьшении внешнего поля до нуля индукция В уменьшается не по первоначальному пути, а по участку «c» из-за сцепления атомных моментов, стремящегося сохранить их в том же направлении. Кривая намагничивания начинает описывать так называемую петлю гистерезиса. Когда Н (внешнее поле) приближается к нулю, то индукция приближается к остаточной величине, определяемой только атомными моментами:

В r = μ 0 (0 + М г).

После того как направление H изменяется, Н и М действуют в противоположных направлениях, и B уменьшается (участок кривой «d» на рис.). Значение поля, при котором В уменьшается до нуля, называется коэрцитивной силой магнита B H C . Когда величина приложенного поля является достаточно большой, чтобы сломать сцепление атомных моментов, они ориентируются в новом направлением поля, а направление M меняется на противоположное. Значение поля, при котором это происходит, называется внутренней коэрцитивной силой постоянного магнита М Н C . Итак, есть две разных, но связанных коэрцитивных силы, связанных с постоянным магнитом.

На рисунке ниже показаны основные кривые размагничивания различных материалов для постоянных магнитов.

Из него видно, что наибольшей остаточной индукцией B r и коэрцитивной силой (как полной, так и внутренней, т. е. определяемой без учета напряженности H, только по намагниченности M) обладают именно NdFeB-магниты.

Поверхностные (амперовские) токи

Магнитные поля постоянных магнитов можно рассматривать как поля некоторых связанных с ними токов, протекающих по их поверхностям. Эти токи называют амперовскими. В обычном смысле слова токи внутри постоянных магнитов отсутствуют. Однако, сравнивая магнитные поля постоянных магнитов и поля токов в катушках, французский физик Ампер предположил, что намагниченность вещества можно объяснить протеканием микроскопических токов, образующих микроскопические же замкнутые контуры. И действительно, ведь аналогия между полем соленоида и длинного цилиндрического магнита почти полная: имеется северный и южный полюс постоянного магнита и такие же полюсы у соленоида, а картины силовых линий их полей также очень похожи (см. рисунок ниже).

Есть ли токи внутри магнита?

Представим себе, что весь объем некоторого стержневого постоянного магнита (с произвольной формой поперечного сечения) заполнен микроскопическими амперовскими токами. Поперечный разрез магнита с такими токами показан на рисунке ниже.

Каждый из них обладает магнитным моментом. При одинаковой ориентации их по направлению внешнего поля они образуют результирующий магнитный момент, отличный от нуля. Он и определяет существование магнитного поля при кажущемся отсутствии упорядоченного движения зарядов, при отсутствии тока через любое сечение магнита. Легко также понять, что внутри него токи смежных (соприкасающихся) контуров компенсируются. Нескомпенсированными оказываются только токи на поверхности тела, образующие поверхностный ток постоянного магнита. Плотность его оказывается равной намагниченности M.

Как избавиться от подвижных контактов

Известна проблема создания бесконтактной синхронной машины. Традиционная ее конструкция с электромагнитным возбуждением от полюсов ротора с катушками предполагает подвод тока к ним через подвижные контакты - контактные кольца со щетками. Недостатки такого технического решения общеизвестны: это и трудности в обслуживании, и низкая надежность, и большие потери в подвижных контактах, особенно если речь идет о мощных турбо- и гидрогенераторах, в цепях возбуждения которых расходуется немалая электрическая мощность.

Если сделать такой генератор на постоянных магнитах, то проблема контакта сразу же уходит. Правда, появляется проблема надежного крепления магнитов на вращающемся роторе. Здесь может пригодиться опыт, накопленный в тракторостроении. Там уже давно применяется индукторный генератор на постоянных магнитах, расположенных в пазах ротора, залитых легкоплавким сплавом.

Двигатель на постоянных магнитах

В последние десятилетия широкое распространение получили вентильные двигатели постоянного тока. Такой агрегат представляет собой собственно электродвигатель и электронный коммутатор его обмотки якоря, выполняющий функции коллектора. Электродвигатель представляет собой синхронный двигатель на постоянных магнитах, расположенных на роторе, как и на рис. выше, с неподвижной обмоткой якоря на статоре. Электронный коммутатор схемотехнически представляет собой инвертор постоянного напряжения (или тока) питающей сети.

Основным преимуществом такого двигателя является его бесконтактность. Специфическим его элементом является фото-, индукционный или холловский датчик положения ротора, управляющий работой инвертора.

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения "северный" и "южный" даны лишь для удобства (как "плюс" и "минус" в электричестве).

Магнитное поле изображается посредством силовых магнитных линий . Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля - силовые линии.

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция , магнитный поток и магнитная проницаемость . Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ .

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B . Единица измерения магнитной индукции – Тесла (Тл ).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца .

Здесь q - заряд, v - его скорость в магнитном поле, B - индукция, F - сила Лоренца, с которой поле действует на заряд.

Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток - скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб) .

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете - Курская и Бразильская магнитные аномалии .

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо ) не объясняет того, как поле сохраняется устойчивым.

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов - в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! и другие типы работ вы можете заказать по ссылке.

Загрузка...