Про наши гаджеты. Понятные инструкции для всех

Твердотопливные ракетные двигатели. Смесевые ракетные твердые топлива

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

(ФГБОУ ВПО)

«Астраханский государственный технический университет»(АГТУ)

«Институт морских технологий, энергетики и транспорта» (ИМТЭиТ)

Кафедра «Теплоэнергетика»(ТЭН)


Курсовая работа

по дисциплине «Топливо»

на тему «Ракетные топлива»


Выполнил

студент группы ТЕТ-21

Приказчиков А.А.

Рецензенты:

студенты группы ТЕТ-21

Путятин С.С., Жидков С.М.

Преподаватель:

д.х.н., профессор Рябухин Ю.И.


Астрахань- 2012



1. Историческая справка

Основные виды ракетного топлива

1 Жидкие ракетные топлива

1.1 Окислители

1.2 Горючее

1.3 Сравнение наиболее распространённых жидких ракетных топлив

2 Твёрдые ракетные топлива

2.1 Ракетные пороха

2.2 Смесевые ракетные топлива

Список литературы


. Историческая справка


Ракеты на твёрдом топливе появились гораздо раньше, чем ракеты с жидкостными ракетными двигателями (ЖРД). Последние настолько стали привычными для нас, что мы забываем о том, когда они стали использоваться для покорения космоса и в боевых действиях воюющих сторон. А это случилось всего каких-то 50 лет назад. До этого твёрдотопливные ракеты, или ракеты с пороховыми двигателями, на протяжении нескольких веков успешно эксплуатировались и применялись в войсках. На возможность использования жидкостей, в том числе жидких водорода H2 и кислорода O2, в качестве топлива для ракет указывал К. Э. Циолковский <#"justify">2. ОСНОВНЫЕ ВИДЫ РАКЕТНОГО ТОПЛИВА


Выбор ракетного топлива зависит от многих факторов. Идеального топлива нет, у каждого есть свои плюсы и минусы. Такие факторы, как цена, удельный импульс, скорость горения, функция зависимости скорости горения от давления, безопасность и технологичность изготовления и другие могут влиять на выбор топлива.


2.1 ЖИДКИЕ РАКЕТНЫЕ ТОПЛИВА


Окислитель и горючее двухкомпонентных топлив содержатся в отдельных ёмкостях - баках и при помощи различных устройств раздельно подаются в камеру двигателя для сжигания. Двухкомпонентные жидкие топлива в настоящее время имеют самое широкое применение, так как они обеспечивают самую наибольшую удельную тягу двигателя, легко позволяют регулировать величину и направление тяги в полете, а также выключать двигатель и запускать его повторно. Недостаток этих топлив - сложное устройство двигателя с большим числом деталей и узлов со сложной системой управления и регулирования.

К самовоспламеняющимся относят такие двухкомпонентные топлива, горение которых начинается само по себе при смешении окислителя и горючего в камере двигателя.

Несамовоспламеняющиеся топлива для начала горения при запуске двигателей требуют применения дополнительных средств зажигания. Самовоспламеняющиеся топлива обеспечивают более надёжный запуск двигателя и устойчивую его работу.

Жидкие однокомпонентные топлива представляют собой заранее приготовленную несамовоспламеняющуюся смесь окислителя и горючего в необходимом для горения соотношении или такое жидкое вещество, которое при определённых условиях разлагается с выделением теплоты и образованием газов. Однокомпонентные топлива размещаются на ракете в одном баке и по одной линии подаются в камеру сгорания через форсунки.

Преимуществом таких топлив перед двухкомпонентными является упрощение конструкции двигателя , поскольку необходима только одна линия системы подачи. Но широкого применения эти топлива в ЖРД не получили, так как они не могут обеспечить необходимую удельную тягу. Те однокомпонентные топлива, которые позволяют получить достаточную удельную тягу, непригодны для использования из-за большой склонности к самопроизвольному взрыву. Однокомпонентные топлива опасны также для применения их с целью охлаждения камеры сгорания. Эти топлива употребляются большей частью только для вспомогательных целей: для двигателей малых тяг, которые применяются с целью управления и стабилизации летательных аппаратов, а так же для вращения турбин турбонасосных агрегатов ЖРД.


Таблица 1. Основные характеристики двухкомпонентных жидких топлив при оптимальном соотношении компонентов (давление в камере сгорания 100 кгс / см2, на срезе сопла 1 кгс / см2).

Окисли-тельГорючееТепло-творность топлива*, ккал / кгПлот-ность*, г / см2Темпера-тура в камере сгорания, КУдельный импульс в пустоте, секАзотная кислота (98 %)Керосин14601,362980313ТГ-0214901,323000310Анилин (80 %) + фурфуриловый спирт (20 %)14201,393050313Жидкий кислородСпирт (94 %)20200,393300255Водород20200,323250391Керосин22001,043755335НДМГ 22001,023670344Гидразин22301,073446346Аммиак22000,843070323АТКеросин15501,273516309НДМГ22001,203469318Гидразин22301,233287322Жидкий фторВодород23000,624707412Гидразин22301,314775370

В двухкомпонентных топливах для полного сгорания обоих компонентов на каждую единицу массы одного из них требуется строго определённое количество другого. Так, для сжигания 1 кг керосина необходимо 15 кг воздуха, или 5,5 кг азотной кислоты, или 3,4 кг жидкого кислорода. В практически выполненных ЖРД окислитель подаётся в камеру в несколько меньшем количестве , чем требуется для полного сгорания.

Оказывается, в этом случае получается наибольшее значение удельной тяги. Причина заключается в том, что при уменьшении расхода окислителя несколько изменяется состав продуктов сгорания. Вследствие этого снижается процесс теплового распада молекул газов - продуктов сгорания - на атомы и ионы, который происходит с большим поглощением теплоты и бесполезным уносом её за пределы сопла, а также улучшаются условия превращения энергии в сопле.

Для эксплуатации жидкостных ракет большое значение имеет температура кипения топлива. Все компоненты топлива делятся на высококипящие и низкокипящие .

К высококипящим относятся окислители и горючие, которые могут содержаться в жидком состоянии при обычных температурах эксплуатации ракет (до +150 0C) под атмосферным или повышенным давлением, остальные относятся к низкокипящим .


2.1.1 Окислители

В жидкостных ракетах количество окислителя по массе превышает количество горючего в среднем в 3-6 раз, а масса топлива в 9 раз больше массы конструкции двигателя.

Свойства топлива во многом зависят от характера окислителя . Например, по важнейшей характеристике - удельной тяге - топливо «жидкий кислород и керосин», отличаются от топлива «азотная кислота и керосин» примерно на 15 %.

Из низкокипящих окислителей наибольшее применение в распространённых двигателях имеет жидкий кислород . Изучается возможность использования жидкого фтора , его соединений с кислородом и озона .

Из высококипящих широко применяются азотная кислота и её смеси с четырёхокисью азота . Может применяться четырёхоксид азота , пероксид водорода . Исследуются соединения фтора с хлором и тетранитрометаном .

Рассмотрим некоторые виды окислителей.

1. ЖИДКИЙ КИСЛОРОД (O 2 ). Представляет собой подвижную жидкость голубоватого цвета несколько тяжелее воды.

Особенности : кислород является одним из наиболее мощных окислителей , так как его молекула не содержит атомов, не участвующих в процессе окисления, как это имеет место, например в азотной кислоте. Топлива более эффективные чем с кислородом могут быть получены только с озоном , фтором или фторидом кислорода .

Основное свойство , определяющее особенности работы с жидким кислородом , заключается в его низкой температуре кипения . Из-за этого он очень быстро испаряется, что вызывает его большие потери при хранении и заправке ракеты. Бак ракеты заправляется жидким кислородом непосредственно перед запуском ракеты. Потери на испарении при заправке составляют до 50 %, а при содержании в ракете до 3 % в час. Жидкий кислород хранится и транспортируется в специальных ёмкостях - танках из металла с обеспечением хорошей тепловой изоляции.

Жидкий кислород не ядовит . Кратковременно соприкосновение его в небольших количествах с открытыми участками тела человека неопасно: образующийся газообразный слой не допускает обмораживания кожи.

Жидкий кислород - один из наиболее дешёвых окислителей , что объясняется простотой производства и обилием сырья. В составе воды он составляет 89 % по массе, а в воздухе - 23 %. Обычно получают кислород из воздуха, путём сжижения и отделения в жидком виде от азота и других газов земной атмосферы.

2. АЗОТНАЯ КИСЛОТА (HNO 3 ) . Химически чистая 100 % азотная кислота является бесцветной легкоподвижной тяжёлой жидкостью, сильно дымящей в воздухе.

Особенности : 100 % азотная кислота неустойчива и легко разлагается на воду, кислород и оксиды азота .

HNO 3 - Мощный окислитель , поскольку в её молекуле содержится

% кислорода . При окислении различных горючих она разлагается на воду, кислород и азот . От всех широко используемых окислителей она выгодно отличается большим удельным весом . Вследствие высокой теплоёмкости она может быть использована в качестве охлаждающего компонента камеры ЖРД.

При обычных условиях эксплуатации азотная кислота - жидкость, что является одним из её преимуществ. Ракеты, в которых она используется в качестве окислителя, могут длительное время храниться заправленными , в постоянной готовности к пуску. К недостаткам в эксплуатации относится значительное повышение давления в герметически закрытых ёмкостях с азотной кислотой, вследствие процесса её разложения. Главный недостаток азотной кислоты - высокая коррозийная активность по отношению к большинству материалов. Агрессивность азотной кислоты значительно усложняет обращение с ней. Хранение и транспортировка её производится с использованием специальных ёмкостей.

Недостатки : азотная кислота обладает ядовитыми свойствами. Попадание её на кожу человека вызывает появление болезненных, долго незаживающих язв. Вредны для здоровья также пары азотной кислоты . Они превосходят по ядовитости угарный газ в 10 раз.

Стоимость азотной кислоты невелика. Основной метод получения азотной кислоты заключался в окислении аммиака кислородом воздуха в присутствии платины и растворении получившихся оксидов азота в воде.


N2 + 2 O2 => 2 NO2


. ТЕТРАОКСИД ДИАЗОТА (N 2 O 4 ) . Представляет собой при обычной температуре жёлтую жидкость.

Особенности : с увеличением температуры распадается на диоксид азота , окрашенный в красно-бурый цвет, так называемый «бурый газ».

Является несколько более эффективным окислителем , чем азотная кислота . Топлива на её основе имеют удельную тягу примерно на 5 % больше, чем азотнокислотные.

Недостатки : по отношению к материалам тетраоксид диазота значительно менее агрессивен , чем азотная кислота , но не менее ядовит .

Главный недостаток - низкая температура кипения и высокая температура затвердевания , что резко уменьшает возможность её использования в ракетных топливах в чистом виде. Условия её применения улучшаются в смесях с другими оксидами азота .

4. ПЕРОКСИД ВОДОРОДА (H 2 O 2 ). Бесцветная прозрачная тяжёлая жидкость.

Особенности: пероксид водорода является нестойким химическим соединением, легко разлагающимся на воду и кислород . Склонность к разложению возрастает с ростом концентрации. При разложении выделяется значительное количество тепла.

Наибольшее распространение получили водные растворы 80 % и 90 % концентрации пероксида водорода. Химической стойкости растворов и безопасности работы с ними можно добиться введением веществ-стабилизаторов . К ним относятся фосфорная , уксусная и щавелевая кислоты . Обязательное условие стабилизации пероксида водорода - чистота . Незначительные примеси и загрязнения резко ускоряют её разложение и даже могут привести к взрыву.

По сравнению с азотной кислотой пероксид водорода обладает малой коррозийной активностью , но некоторые металлы он окисляет.

Недостатки : пероксид водорода пожаро- и взрывоопасен. Органические вещества при соприкосновении с ним легко загораются. При температуре +175 0C он взрывается. Попадание его на кожу вызывает тяжёлые ожоги .

В настоящее время пероксид водорода мало применяется, т. к. топлива на его основе дают сравнительно невысокую тягу.

5. ЖИДКИЙ ФТОР (F 2 ). Представляет собой тяжёлую жидкость ярко-жёлтого цвета.

Особенности: фтор обладает лучшими окислительными свойствами , чем кислород . Из всех химических элементов он наиболее активен , вступая в соединения почти со всеми окисляющимися веществами при обычной комнатной температуре. При этом часто происходит воспламенение. Даже кислород окисляется фтором , сгорая в его атмосфере.

Из-за своей исключительно высокой химической активности фтор со всеми горючими образует самовоспламеняющиеся топлива . Однако фторные топлива дают более высокую удельную тягу, чем кислородные , только при условии, если горючее богато водородом . Горючие содержащие много углерода , образуют со фтором значительно менее эффективные топлива.

Недостатки : фтор очень ядовит . Он сильно разъедает кожу, глаза, дыхательные пути. В ракетной технике он пока используется только в опытных двигателях.


2.1.2 Горючее

В качестве горючего в жидких топливах применяются в основном вещества, в которых окисляемыми атомами химических элементов являются атомы углерода и водорода . В природе существует чрезвычайно большое количество химических соединений этих элементов. Большинство из них относятся к органическим веществам.

В настоящее время в ракетной технике используется много разнообразного горючего. Несмотря на то, что горючее составляет только 15-25 % от массы топлива, его правильный выбор имеет большое значение . Только при удачном сочетании окислителя и горючего могут быть удовлетворены если не все, то хотя бы важнейшие требования к топливу. Большинство видов ракетного горючего являются высококипящими. Их общий недостаток - невысокий удельный вес , в полтора-два раза меньший, чем у окислителей.

На практике в качестве ракетного горючего чаще всего применяется углеводород , являющийся продуктом переработки нефти (керосины), амины , аммиак, гидразин и его производные.

Рассмотрим некоторые виды горючего.

1. УГЛЕВОДОРОДЫ (нефтепродукты) представляют собой смеси химических соединений углерода с водородом . Их энергетические показатели ниже, чем у водорода , но выше, чем у углерода . Наибольшее применение имеет керосин .

Особенности керосина: он представляет собой лёгкую жидкость с высокой температурой кипения, обладающую большой стойкостью против разложения при нагревании. Керосин не является веществом строго определённого состава с однозначной химической формулой, из-за чего невозможно точно определить его свойства. В зависимости от месторождения нефти состав и свойства керосина могут меняться. Ракетный керосин имеет в своём составе повышенное содержание таких углеводородов , которые дают меньше отложений при охлаждении двигателя.

Недостатки керосина: он не воспламеняется при соприкосновении с обычными окислителями, поэтому необходим специальный источник зажигания .

Керосин широко применяется в ракетных топливах с жидким кислородом , азотнокислотными окислителями и пероксидом водорода .

2. АМИНЫ - соединения, которые получаются, если в молекуле аммиака один, два или три атома водорода заменить углеводородными группами . В ракетной технике нашли применение: триэтиламин , анилин , ксилидин и др.

Особенность : амины бурно взаимодействуют с азотной кислотой и тетраоксидом диазота , приводящие к самовоспламенению. По эффективности горючее на основе аминов близко к керосину. Способность аминов вызывать коррозию металлов невелика . Они хранятся и транспортируются в ёмкостях из обычных чёрных металлов.

Недостатки: у аминов значительно большая стоимость по сравнению с керосином, а так же ядовитость , которая проявляется как при вдыхании паров, так и при попадании на кожу.

Для улучшения физико-химических свойств, амины используются в качестве горючего в смеси с другими веществами, в том числе и с другими аминами .

Горючее на основе аминов нашло применение в самовоспламеняющихся топливах с азотной кислотой, четырёхоксидом азота и их смесями.

3. ГИДРАЗИН . При горении гидразина в реакции окисления участвуют только атомы водорода , а азот выделяется в свободном виде, увеличивая количество газа.

Гидразин представляет собой бесцветную прозрачную жидкость (примерно в том же диапазоне температур, что и вода) и имеет аммиачный запах. Обычно применяется в смесях с другими веществами .

Особенности: гидразин является эффективным горючим . Этому способствует то, что его молекула образуется с поглощением теплоты, которая в процессе горения выделяется дополнительно к теплоте окисления. Другое его положительное свойство - большой удельный вес .

Недостатки: гидразин имеет высокую температуру затвердевания , что представляет большое неудобство в эксплуатации. Его пары при нагревании и ударах взрываются. При воздействии кислорода воздуха он окисляется. Гидразин коррозийно активен . Стойкими по отношению к нему являются алюминий и его сплавы, нержавеющие стали, полиэтилен, полифторэтилен, фторопласт . Гидразин ядовит , раздражающе действует на слизистую оболочку глаз и может вызывать временную слепоту.

4. НЕСИММЕТРИЧНЫЙ ДИМЕТИЛГИДРАЗИН представляет собой бесцветную прозрачную жидкость с резким запахом.

Особенности : по сравнению с гидразином он существенно удобнее в эксплуатации, так как остаётся жидкостью в большем интервале температур. Обладает хорошей стойкостью при нагревании. В отличие от гидразина его пары не взрываются от внешнего воздействия. Главная особенность - высокая химическая активность. Он легко окисляется кислородом воздуха, а с углекислой кислотой образует соли, выпадающие в осадок.

Недостатки : диметилгидразин (по сравнению с гидразином) обладает худшей эффективностью как горючее, поскольку в его молекуле кроме атомов водорода содержатся менее эффективные атомы углерода. Самовоспламеняется на воздухе при температуре 250 0С, смеси паров диметилгидразина с воздухом легко взрываются, и он ядовит .


2.1.3 Сравнение наиболее распространённых жидких ракетных топлив

. Топлива на основе жидкого кислорода обеспечивают наибольшую удельную тягу из всех применяемых в настоящее время ракетных топлив. Их основной недостаток - низкая температура кипения окислителя. Это затрудняет использование их в боевых ракетах, которые должны длительное время находиться в готовности к пуску.

С жидким кислородом могут применяться такие горючие как керосин, несимметричный диметилгидразин , аммиак . Особое место занимает топливо кислород + водород , которое обеспечивает удельную тягу на 30-40 % большую, чем другие распространённые топлива. Это топливо более всего подходит для использования в больших ракетах.

2. Топлива на основе азотной кислоты в смеси 20-30 % оксидов азота значительно уступают кислородным топливам по удельной тяге , но обладают преимуществом по удельному весу . Кроме того, эти топлива являются высококипящими длительнохранимыми веществами, что позволяет держать боевые ракеты в полностью снаряженном и заправленном виде длительное время.

Азотнокислотные окислители обладают хорошими охлаждающими свойствами . Но вследствие сравнительно невысоких температур в камере сгорания охлаждение двигателей средних и больших тяг может быть обеспечено горючим, хотя в составе топлива его содержится меньше, чем окислителя.

Такие горючие как смесь аминов , несимметричный диметилгидразин и некоторые другие вещества образуют с азотнокислотными окислителями самовоспламеняющиеся топлива . Керосин и другие углеводороды требуют принудительного зажигания .

3. Топлива на основе четырёхоксида азота дают несколько большую удельную тягу , чем азотнокислотные, но имеют пониженный удельный вес . Несмотря на такой эксплуатационный недостаток, как высокая температура затвердевания окислителя , они находят применение в ракетах дальнего действия. Такие топлива заменили кислородное топливо, т. к. дают возможность хранить ракету в заправленном состоянии, готовой к запуску.

Преимуществом топлива на основе четырёхоксида азота является также самовоспламеняемость .


2.2 Твёрдые ракетные топлива


По внешнему виду все заряды твёрдого топлива представляют собой плотные твёрдые тела главным образом тёмных цветов. Ракетные пороха обычно имеют тёмно-коричневый цвет и внешне похожи на роговидное вещество. Если они содержат добавки (в виде сажи, например), то цвет их бывает чёрным. Смесевые топлива бывают чёрного и чёрно-серого цвета в зависимости от цвета горючего и добавок, и обычно подобны сильно завулканизированной резине, но менее эластичны и более хрупки.

Твёрдые топлива практически безопасны как по воздействию на организм человека, так и по отношению к различным конструкционным материалам. При хранении в обычных условиях они не выделяют агрессивных веществ . Ракетные пороха из-за летучих свойств растворителя - нитроглицерина (рис.1) - способны вызывать кратковременные не очень сильные головные боли.


Рис.1. Структурная формула нитроглицерина


2.2.1 Ракетные пороха

Ракетные пороха представляют собой сложные многокомпонентные системы, в которых каждому веществу отведена своя роль с целью получения заданных свойств того или иного вида пороха. Основным компонентом порохов являются нитраты целлюлозы, которые при сгорании выделяют наибольшее количество тепловой энергии. Они же определяют и физико-химические свойства пороха. Рассмотрим некоторые составные части порохов.

1. НИТРАТЫ ЦЕЛЛЮЛОЗЫ , или нитроклетчатка, получаются обработкой целлюлозы смесью азотной и серной кислот. Такая обработка называется нитрацией . Исходный материал - целлюлоза (клетчатка) - широко распространённое в природе вещество, из которого почти целиком состоят лён, пенька, хлопок и др.

Нитраты целлюлозы представляют собой рыхлую массу. Они легко воспламеняются даже от слабой искры. Горение происходит за счёт кислорода, содержащегося в нитрогруппах, и подвода кислорода извне не требуется . Однако непосредственно использование нитроцеллюлозы в качестве ракетного топлива исключается, так как из неё невозможно изготовить заряд, горящий по строго определённому закону. Даже после сильного прессования она имеет множество пор. Горение её происходит не только снаружи но и внутри, т. к. горючий газ проникает по порам внутрь. Вследствие этого может произойти взрыв , способный разрушить двигатель. Для предотвращения этого производят пластификацию нитроцеллюлозы , т. е. приготавливают из неё твёрдый раствор однородного состава, без пор.

2. РАСТВОРИТЕЛИ-ПЛАСТИФИКАТОРЫ нитроцеллюлозы - нитроглицерин , нитрогликоль и некоторые другие вещества. Они являются вторым основным компонентом порохов как по массе, так и по запасу энергии. Их часто называют труднолетучими растворителями , так как они не удаляются из раствора в процессе производства, а полностью остаются в составе пороха.

НИТРОГЛИЦЕРИН - вещество, образующееся при нитрации трёхатомного спирта глицерина - смесью азотной и серной кислот . Представляет собой бесцветную маслообразную жидкость.

Нитроглицерин - мощное взрывчатое вещество . Он легко взрывается при ударе или трении. Горение его происходит за счёт кислорода, содержащегося в нитрогруппах. Поскольку кислорода в его молекуле имеется в избытке, то часть кислорода идёт на дополнительное окисление нитроцеллюлозы, что приводит к общему увеличению запаса энергии твёрдого топлива. С увеличением содержания нитроглицерина в порохах растут не только их энергетические показатели , но и взрывоопасность и чувствительность к удару . Ракетные пороха с большим содержанием нитроглицерина обеспечивают высокую удельную тягу.

Для пластификации нитроцеллюлозы с целью облегчения технологии производства, увеличения сроков и допустимой температуры хранения зарядов применяют и другие растворители.

НИТРОГЛИКОЛЬ как взрывчатое вещество, менее чувствительно к механическим воздействиям . Его получают нитрацией этиленгликоля . Запас кислорода в его молекуле меньше, чем в молекуле нитроглицерина , поэтому применение в качестве растворителя ухудшает энергетические показатели порохов.

Кроме нитроглицерина и нитрогликоля иногда применяется такой растворитель нитроцеллюлозы , как нитрогуанидин .

3. ДОПОЛНИТЕЛЬНЫЕ ПЛАСТИФИКАТОРЫ и вещества, регулирующие энергетические свойства топлива, хорошо совмещаются с основными растворителями. Они не содержат совсем, или содержат очень мало активного кислорода и потому вводятся в состав порохов в небольших количествах, чтобы не снижать их энергетические характеристики. К ним относятся такие вещества, как динитролуол ,дибутилфталат , диэтилфталат .

4. СТАБИЛИЗАТОРЫ вводятся в состав порохов для повышения их химической стойкости. При хранении порохов происходит разложение нитроцеллюлозы с образованием оксидов азота , которые ускоряют её дальнейшее разложение, делая её взрывоопасной. Стабилизаторы замедляют разложение нитроцеллюлозы , соединяясь с выделяющимися оксидами азота , они связывают их, превращая в химически малоактивные вещества.

5. ВЕЩЕСТВА, УЛУЧШАЮЩИЕ ГОРЕНИЕ ПОРОХОВ , обеспечивают ускорение , замедление или стабилизацию процесса сгорания в камере твёрдотопливных ракетных двигателей. К ним относится большое число солей или оксидов различных металлов (олова Sn , марганца Mn , цинка Zn , хрома Cr , свинца Pb , титана Ti , калия K , бария Ba и т. д.).

6. ТЕХНОЛОГИЧЕСКИЕ ДОБАВКИ ? вещества, облегчающие процесс изготовления пороха, вводятся в наиболее ответственных операциях для снижения трения и нагрузок на машины . Они играют роль смазок как внутри топливной массы, так и между массой и инструментом. Для этого применяются мел, уменьшающий внутреннее трение, вазелин и трансформаторное масло, графит , стеарат свинца и другие вещества,снижающие давление при прессовании. Вводятся они в малом количестве.

Производство ракетных порохов ведётся по сложной технологической схеме с применением высоких температур и давления . В задачу производства входит изготовление твёрдых однородных пороховых зарядов, отвечающих ряду жёстких требований, из большого числа веществ, разнородных по химическим и физическим свойствам, а также агрегатному состоянию.


2.2.2 Смесевые ракетные топлива

Смесевые топлива по сравнению с порохами, по составу значительно проще. Они включают в себя два-три, редко четыре компонента. Рассмотрим некоторые из них.

1. В КАЧЕСТВЕ ОКИСЛИТЕЛЕЙ СМЕСЕВЫХ ТОПЛИВ используются, как правило, соли неорганических кислот - азотной и хлорной . Их особенность - большой процент кислорода в молекуле . Все они по массе примерно наполовину состоят из кислорода. В обычных условиях они обладают химической стойкостью, но при сильном нагревании способны распадаться с выделением свободного кислорода. Все твёрдые окислители имеют в своём составе, помимо кислорода , атомы химических элементов, способные к окислению. Поэтому при разложении этих окислителей часть кислорода оказывается связанной с этими элементами и свободного кислорода выделяется значительно меньше, чем имеется в молекуле.

Самым распространённым окислителем твёрдых топлив является ПЕРХЛОРАТ АММОНИЯ . Эта соль представляет собой белый (бесцветный) кристаллический порошок, и разлагается она при нагревании выше 150 0С. На воздухе незначительно увлажняется. Чувствителен к удару и трению, особенно при наличии органических примесей. Может гореть без горючего и взрываться. При горении не выделяет твёрдых веществ, но в его продуктах сгорания содержится агрессивный и довольно ядовитый газ - хлористый водород (HCl), который при наличии влаги образует с ней соляную кислоту. Преимущества перхлората аммония состоят в том, что он обладает невысокой температурой разложения и разлагается только на газообразные продукты с небольшой молекулярной массой, обладает малой гигроскопичностью, доступен, дёшев.

Другим окислителем является ПЕРХЛОРАТ КАЛИЯ . Эта соль разлагается при температуре выше 440 0С, на воздухе не увлажняется (негигроскопична), не горит и не взрывается. Весь кислород, содержащийся в её составе, является активным. При сгорании она выделяет твёрдое вещество - хлорид калия, который создаёт плотное дымовое облако. Наличие хлорида калия в продуктах сгорания резко ухудшает свойства ракетных топлив, т. е. условия перехода тепловой энергии в кинетическую в сопле ракетного двигателя.

Ещё один широко используемый окислитель - НИТРАТ АММОНИЯ (аммиачная селитра), используется также как азотное удобрение. Представляет собой бесцветный (белый) кристаллический порошок. Разлагается при температуре 243 0С. Способен гореть и взрываться. При сгорании выделяется большое количество только газообразных продуктов. Смеси с органическими веществами способны самовозгораться, поэтому хранение ракетных топлив на его основе представляет серьёзную проблему. Имеет ядовитые свойства.

Приведёнными примерами не исчерпывается перечень возможных окислителей твёрдотопливных ракетных двигателей, в качестве которых могут использоваться, например, перхлораты лития , нитрозила и нитрония , динитрат гидразина и др.

2. ГОРЮЧЕ-СВЯЗУЮЩИЕ ВЕЩЕСТВА смесевых топлив - это высокомолекулярные органические соединения, или полимеры . Полимерами называются такие соединения, молекулы которых состоят из очень большого числа элементарных звеньев одинаковой структуры. Элементарные звенья соединяются между собой в длинные цепи линейного или разветвлённого строения. Свойства полимера зависят от химического строения элементарных звеньев, их количества и взаимного расположения.

Многие твёрдые полимеры получают из жидких веществ - мономеров , молекулы которых состоят из сравнительно небольшого числа атомов. Мономеры способны самопроизвольно соединяться в длинные цепи - полимеры? этот процесс называется полимеризацией .

Для ускорения полимеризации, или отверждения, применяются некоторые специальные вещества, называемые инициаторами , или отвердителями .

Многие высокомолекулярные соединения способны хорошо смешиваться и склеиваться с порошками (с кристаллическим окислителем и металлическим порошком), а затем превращаться в твёрдую монолитную массу после полимеризации. При нагревании некоторые полимеры размягчаются, становятся вязкотекущими, и в таком виде могут смешиваться с наполнителями , прочно удерживая их . При этом их можно заливать в формы и получать топливные заряды заданных размеров и форм .

Для применения в качестве горюче-связующих веществ удовлетворительными свойствами обладают синтетические соединения типа каучуков , смол и пластмасс , а также тяжёлые нефтепродукты - асфальт и битум . Состав и свойства нефтепродуктов колеблются в очень широких пределах, а нужные механические свойства сохраняются только в небольшом интервале температур. Поэтому чаще употребляются синтетические вещества , имеющие более постоянный состав и лучшие механические свойства. На практике применяют каучуки - ПОЛИУРЕТАНОВЫЙ , БУТАДИЕНОВЫЙ и ПОЛИСУЛЬФИДНЫЙ , смолы - ПОЛИЭФИРНУЮ , ЭПОКСИДНУЮ И КАРБАМИДНУЮ , а также некоторые пластмассы, в состав которых входят атомы азота , кислорода , серы или хлора .

Основные недостатки полимерных смол и пластмасс как горюче-связующих веществ - малая эластичность и повышенная хрупкость при низких температурах . От этих недостатков в основном свободны синтетические каучуки.

3. ПОРОШКООБРАЗНЫЕ МЕТАЛЛЫ могут вводиться в состав смесевых топлив в качестве дополнительного горючего компонента. Для этого пригодны металлические бериллий , литий , алюминий , магний , а так же некоторые их соединения. В результате введения указанных металлов происходит повышение запаса энергии топлива, т. е. увеличивается удельная тяга двигателей. Кроме того, металлические добавки повышают удельный вес топлива , что улучшает характеристики двигателя и ракеты в целом. При этом следует учитывать, что чем больше содержание металлсодержащего горючего, тем выше температура продуктов их сгорания. Почти все современные смесевые топлива содержат в качестве компонентов металлы.

Наиболее эффективным металлическим горючим является БЕРИЛЛИЙ , однако перспективы применения бериллия очень ограничены, потому что его запасы незначительны , а продукты сгорания весьма ядовиты . Следующий по эффективности металл - ЛИТИЙ . Его применение тормозится очень низкой температурой плавления (+186 0С) и самовоспламенением на воздухе в расплавленном состоянии. Самым распространённым и наиболее дешёвым металлическим горючим является АЛЮМИНИЙ . Применение тонко измельчённого порошка алюминия в смесевых топливах не только повышает удельную тягу двигателей, но и улучшает надёжность их запуска и увеличивает стабильность горения топлива. МАГНИЙ применяется редко, так как он в топливах даёт малую удельную тягу.

Кроме чистых металлов изучается применение в качестве дополнительных горючих веществ их соединений с водородом (гидридов).

4. КАТАЛИЗАТОРЫ И ДРУГИЕ ДОБАВКИ вводятся в смесевые топлива в небольших количествах для улучшения процесса горения (сажа, соли некоторых металлов), придания топливу пластичных свойств (растительные, минеральные и синтетические масла), улучшения стойкости при хранении и стабильности состава (диэтилфталат , этилцентралит ), облегчения технологии производства.

Технология изготовления зарядов из смесевых топлив включает смешение компонентов топлива, отливку и отверждение. В общем процесс изготовления смесевых топлив проще, чем порохов, однако при изготовлении крупногабаритных зарядов приходится преодолевать большие технологические трудности.


Список литературы

ракетное топливо горючее окислитель

Использованные электронные ресурсы:

1. «Ракетные топлива современных межконтинентальных баллистических ракет».

. А.В. Карпенко «Из истории твёрдотопливных ракет».

. Википедия (свободная энциклопедия).


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Твердое ракетное топливо представляет собой твёрдое вещество (смесь веществ), которое способно гореть без воздуха и при этом выделять много газообразных соединений, разогретых до высокой температуры. Такие составы используют для создания в двигателях ракет.

Ракетное топливо используется как источник энергии для Кроме твердого горючего, существуют ещё гелеобразные, жидкие и гибридные аналоги. У каждой разновидности горючего имеются свои преимущества и недостатки. Жидкие топлива бывают однокомпонентными и двухкомпонентными (горючее + окислитель). Гелеобразные топлива представляют собой составы, загущенные до состояния геля с помощью Гибридные топлива - это системы, которые включают в себя твердое горючее и жидкий окислитель.

Первые разновидности ракетного горючего были именно твердыми. В качестве рабочего вещества применялся порох и его аналоги, которые использовались в военном деле и для создания фейерверков. Сейчас эти соединения применяются лишь для изготовления небольших модельных ракет, как ракетное топливо. Состав позволяет запускать небольшие (до 0,5 м) ракеты на несколько сотен метров в высоту. Двигателем в них выступает маленький цилиндр. Он начинен твердой горючей смесью, которая поджигается раскаленной проволокой и горит всего несколько секунд.

Ракетное топливо твердого типа чаще всего состоит из окислителя, горючего и катализатора, позволяющего поддерживать стойкое горение после воспламенения состава. В исходном состоянии данные материалы порошкообразные. Чтобы сделать из них ракетное топливо, необходимо создать плотную и которая будет гореть долго, ровно и непрерывно. В твердотопливных двигателях ракет используются: в качестве окислителя, (углерод), как горючее, и сера, как катализатор. Это состав черного пороха. Второй комбинацией материалов, которые применяются, как ракетное топливо являются: бертолетова соль, алюминиевая или магниевая пудра и хлорат натрия. Данный состав называют ещё белым порохом. Твердые горючие наполнители для военных ракет подразделяются на баллиститные (нитроглицериновые спрессованные пороха) и смесевые, которые применяют в форме канальных шашек.

Твердотопливный ракетный двигатель работает следующим образом. После воспламенения топливо начинает гореть с заданной скоростью, выбрасывая через сопло горячее газообразное вещество, что обеспечивает тягу. Горючее в двигателе горит, пока не кончится. Поэтому остановить процесс и выключить двигатель невозможно, пока наполнитель не сгорит до конца. Это один из серьезных минусов твердотопливных двигателей, по сравнению с другими аналогами. Однако в настоящих космических баллистических носителях твердотопливные материалы применяются только на начальном этапе полета. На следующих этапах используются другие типы ракетного горючего, поэтому недостатки твердотопливных составов существенной проблемы не представляют.

Ракетные топлива должны обеспечивать выделение заданного количества энергии с желаемой скоростью при вполне определенных условиях. В соответствии с этим требованием и следует выбирать характеристики топлива. Основным направлением в разработке перспективных ракетных топлив является поиск веществ с высоким удельным импульсом, но во многих случаях вследствие существования других технических требований приходится принимать компромиссные решения. Например, в газогенераторе желательно иметь низкую скорость горения и относительно низкую температуру продуктов сгорания ТРТ. Для некоторых ракет малого радиуса действия, например реактивного противотанкового гранатомета типа «Базука», требуется высокая скорость горения. Для стратегических ракет высокой боеготовности обеспечение компактности двигателя и безопасности зарядов при транспортировке и хранении более важно, чем достижение максимального удельного импульса. К тактическим ракетам выдвигается требование минимального дымообразования. Твердые ракетные топлива удобно характеризовать некоторой совокупностью свойств, которые можно разделить на следующие группы: энергетические свойства, баллистические, механические и общие.

2.1.1. ЭНЕРГЕТИЧЕСКИЕ СВОЙСТВА

Наиболее важной характеристикой ТРТ является удельный импульс который, как правило, составляет 180-270 с в условиях на уровне моря и эталонном давлении в камере сгорания, равном Согласно известному соотношению

ТРТ будет обладать высоким удельным импульсом при высокой температуре горения и при малой молекулярной массе газообразных продуктов сгорания Этого можно достичь, используя высокоэнергетические химические соединения, имеющие малую отрицательную (или даже положительную) теплоту образования и состоящие в основном из атомов легких элементов Количество таких соединений, существующих в твердом агрегатном состоянии при нормальных условиях, ограниченно.

2.1.2. БАЛЛИСТИЧЕСКИЕ СВОЙСТВА

Кроме высокого удельного импульса ракетное топливо должно обладать большой плотностью, необходимой для уменьшения габаритов двигателя, а также иметь приемлемые внутрибаллистические характеристики, такие, как:

1) низкий показатель степени в законе горения ТРТ типа где линейная скорость горения заряда;

2) подходящая скорость горения при рабочем давлении в двигателе;

3) низкая чувствительность к изменениям температуры заряда, т. е. низкий коэффициент температурной чувствительности (см. разд. 5.3.1);

4) хорошая воспроизводимость характеристик;

5) надежная воспламеняемость.

2.1.3. МЕХАНИЧЕСКИЕ СВОЙСТВА

Твердое ракетное топливо должно иметь достаточную механическую прочность в широком диапазоне температур. Должно быть исключено растрескивание заряда при его транспортировке или хранении в условиях изменяющейся внешней температуры, а также при горении, когда заряд подвергается высоким перегрузкам и действию больших градиентов давления. В одних случаях необходимо строго ограничивать деформацию твердотопливного заряда, в других - очень важна прочность соединения заряда с корпусом ТРТ.

2.1.4. ОБЩИЕ СВОЙСТВА

К общим требованиям, предъявляемым к ТРТ, относятся высокая физическая и химическая стабильность, низкая склонность к взрыву и детонации, пониженное содержание или отсутствие дымовых частиц в продуктах сгорания, низкая токсичность продуктов сгорания, низкая стоимость, технологичность и простота изготовления зарядов, доступность сырья для производства компонентов ТРТ.

Видно, что некоторые из приведенных требований противоречивы. Выбирать топлива следует в соответствии с условиями будущего применения двигателя. Чтобы удовлетворить некоторым указанным требованиям, в состав топлива вводят присадки (это может повлиять, например, на скорость горения ТРТ, механические характеристики, технологические операции в процессе изготовления зарядов или на характеристики воспламенения).

В общем случае нагрев рабочего тела присутствует как составляющая рабочего процесса теплового ракетного двигателя. Причем наличие источника теплоты - нагревателя формально обязательно (в частном случае его тепловая мощность может равняться нулю). Тип его можно характеризовать видом энергии, переходящей в теплоту. Таким образом получаем признак классификации, по которому тепловые ракетные двигатели по виду энергии, преобразуемой в тепловую энергию рабочего тела, делятся на электрические, ядерные (рис.10.1.) и химические (рис 13.1, уровень 2).

Схема, конструкция и достижимые параметры ракетного двигателя на химическом топливе во многом определяются агрегатным состоянием ракетного топлива. Ракетные двигатели на химическом топливе (в зарубежной литературе иногда называемые химическими ракетными двигателями) по этому признаку делятся на:

жидкостные ракетные двигатели - ЖРД, компоненты топлива которых в состоянии хранения на борту - жидкость (рис. 13.1, уровень 3; фото, фото),

ракетные двигатели твердого топлива - РДТТ (рис. 1.7, 9.4, фото, фото),

гибридные ракетные двигатели - ГРД, компоненты топлива которых находятся на борту в разных агрегатных состояниях (рис. 11.2).

Очевидным признаком классификации двигателей на химическом топливе является число компонентов ракетного топлива.

Например, ЖРД на однокомпонентном или на двухкомпонентном топливе, ГРД на трехкомпонентном топливе (по зарубежной терминологии - на трибридном топливе) (рис. 13.1, уровень 4).

По конструктивным признакам возможна классификация ракетных двигателей с выделением десятков рубрик, но основные отличия в выполнении целевой функции определяются схемой подачи компонентов в камеру сгорания. Наиболее характерна классификация по этому признаку ЖРД.

Классификация ракетных топлив.

РТ подразделяются на твердые и жидкие. Твердые ракетные топлива имеют ряд преимуществ перед жидкими, они длительно хранятся, не воздействуют на оболочку ракеты, не представляют опасности для работающего с ним персонала в связи с низкой токсичности.

Однако взрывной характер их горения создает трудности в их применении.

К твердым ракетным топливам относятся баллистные и кордитные пороха на основе нитроцеллюлозы.

Жидкостный реактивный двигатель, идея создания которого принадлежит К.Э.Циолковскому, наиболее распространен в космонавтике.

Жидкие РТ могут быть однокомпонентными и двухкомпонентными (окислитель и горючие).

К окислителям относятся: азотная кислота и окислы азота (двуокись, четырехокись), перекись водорода, жидкий кислород, фтор и его соединения.

В качестве горючего используется керосины, жидкий водород, гидразины. Наиболее широко используется гидразин и несимметричный диметилгидразин (НДМГ).

Вещества, входящие в состав жидких РТ обладают высокой агрессивностью и токсичностью к человеку. Поэтому перед медицинской службой стоит проблема проведения профилактических мероприятий по защите личного состава от острых и хронических отравлений КРТ, организации оказания неотложной помощи при поражениях.

В связи с этим и изучаются патогенез, клиника поражений, разрабатываются средства оказания неотложной помощи и лечения пораженных, создаются средства защиты кожи и органов дыхания, устанавливаются ПДК различных КРТ и необходимые гигиенические нормы.

Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.

К преимуществам ЖРД можно отнести следующие:

Самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4 500 м/с для пары кислород-водород, для керосин-кислород - 3 500 м/с).

Управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском. Это необходимо при маневрировании аппарата в космическом пространстве.

При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса. Чем больше объём топлива на ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.

Недостатки ЖРД:

ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твёрдотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого). Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоемка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твёрдотопливным двигателям, ввиду их более высокой надёжности, мобильности и боеготовности.

Компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков. Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.

В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).

Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер, Галилео).

омпоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты (см. Формула Циолковского), которые при недостаточно высоком значении удельного импульса могут оказаться нереальными. В таблице 1 приведены основные характеристики некоторых сочетаний компонентов жидкого топлива.

Помимо удельного импульса при выборе компонентов топлива, решающую роль могут сыграть и другие показатели свойств топлива, в том числе:

Плотность, влияющая на размеры баков компонентов. Как следует из табл. 1, водород является горючим, с самым большим удельным импульсом (при любом окислителе), однако он обладает крайне низкой плотностью. Поэтому первые (самые большие) ступени ракет-носителей обычно используют другие (менее эффективные, но более плотные) виды горючего, например, керосин, что позволяет уменьшить размеры первой ступени до приемлемых. Примерами такой «тактики» служат ракета Сатурн-5, первая ступень которой использует компоненты кислород/керосин, а 2-я и 3-я ступени - кислород/водород, и система Спейс Шаттл, в которой в качестве первой ступени использованы твёрдотопливные ускорители.

Температура кипения, которая может накладывать серьёзные ограничения на условия эксплуатации ракеты. По этому показателю компоненты жидкого топлива подразделяют на криогенные - охлаждённые до крайне низких температур сжиженные газы, и высококипящие - жидкости имеющие температуру кипения выше 0 °C.

Криогенные компоненты не могут долго храниться, и транспортироваться на большие расстояния, поэтому они должны изготовляться (по крайней мере сжижаться) на специальных энергоёмких производствах, находящихся в непосредственной близости от места старта, что делает пусковую установку совершенно немобильной. Помимо этого, криогенные компоненты обладают и другими физическими свойствами, предъявляющими дополнительные требования к их использованию. Например, наличие даже незначительного количества воды или водяного пара в ёмкостях со сжиженными газами приводит к образованию очень твёрдых кристаллов льда, которые при попадании в топливную систему ракеты воздействуют на её части как абразивный материал и могут стать причиной тяжёлой аварии. За время многочасовой подготовки ракеты к старту на ней намерзает большое количество инея, превращающегося в лёд, и падение его кусков с большой высоты представляет опасность для персонала, занятого в подготовке, а также для самой ракеты и стартового оборудования. Сжиженные газы после заправки ими ракеты начинают испаряться, и до момента старта их нужно непрерывно пополнять через специальную систему подпитки. Избыток газа, образующегося при испарении компонентов, необходимо отводить таким образом, чтобы окислитель не смешивался с горючим, образуя взрывчатую смесь.

Высококипящие компоненты гораздо более удобны при транспортировке, хранении и оперировании с ними, поэтому в 50е годы ХХ в они вытеснили криогенные компоненты из области военного ракетостроения. В дальнейшем эта область всё в большей степени стала заниматься твёрдым топливом. Но при создании космических носителей криогенные топлива пока сохраняют своё положение за счёт высокой энергетической эффективности, а для выполнения маневров в космическом пространстве, когда топливо должно сохраняться в баках месяцами, а то и годами, наиболее приемлемыми являются высококипящие компоненты. Иллюстрацией такого «разделения труда» могут служить ЖРД, задействованные в проекте Аполлон: все три ступени ракеты-носителя Сатурн-5 используют криогенные компоненты, а двигатели лунного корабля, предназначенные для коррекции траектории и для маневров на окололунной орбите, - высококипящие несимметричный диметилгидразин и тетраоксид диазота.

Химическая агрессивность. Этим качеством обладают все окислители. Поэтому наличие в баках, предназначенных для окислителя, даже незначительных количеств органических веществ (например, жировых пятен, оставленных человеческими пальцами) может вызвать возгорание, вследствие которого может загореться материал самого бака (алюминий, магний, титан и железо очень энергично горят в среде ракетного окислителя). Из-за агрессивности окислители, как правило, не используются в качестве теплоносителей в системах охлаждения ЖРД, а в газогенераторах ТНА, для снижения тепловой нагрузки на турбину рабочее тело перенасыщается горючим, а не окислителем. При низких температурах жидкий кислород является, пожалуй, самым безопасным окислителем, потому, что альтернативные окислители, такие как тетраоксид диазота или концентрированная азотная кислота вступают в реакцию с металлами, и хотя они являются высококипящими окислителями, которые могут подолгу храниться при нормальной температуре, время службы баков, в которых они находятся, ограничено.

Токсичность компонентов топлива и продуктов их горения является серьёзным ограничителем их использования. Например, фтор, как следует из табл.1., как окислитель, более эффективен, чем кислород, однако в паре с водородом он образует фтороводород - вещество крайне токсичное и агрессивное, и выброс нескольких сотен, тем более, тысяч тонн такого продукта сгорания в атмосферу при запуске большой ракеты, сам по себе является крупной техногенной катастрофой, даже при удачном запуске. А в случае аварии, и разлива такого количества этого вещества, ущерб не поддаётся учёту. Поэтому фтор не используется в качестве компонента топлива. Токсичными являются и тетраоксид азота, азотная кислота и несимметричный диметилгидразин. В настоящее время предпочитаемым (с экологической точки зрения) окислителем является кислород, а горючим - водород, за которым следует керосин.

Первые виды твердого ракетного топлива были похожи на оружейный порох и использовались в военной технике, а также при запуске фейерверков. В настоящее время такое топливо применяется только для моделей ракет. Типичный двигатель для модели ракеты - это маленький цилиндр размером с палец, начиненный материалом, похожим на порох. Он поджигается горячей проволокой и горит 1-2 секунды. Благодаря тяге, которая обеспечивается таким маленьким двигателем, можно запустить маленькую ракету (длиной около 0,5 м) на высоту несколько сотен метров, если, конечно, ракете дать возможность стартовать после того, как топливо начнет гореть.

Базовое твердое топливо содержит горючее, окислитель и катализатор, который способствует поддержанию устойчивого горения после воспламенения. Эти составляющие топлива в исходном состоянии находятся в виде порошка. Затем из них создается однородная плотная смесь, чтобы обеспечить ровное, непрерывное, длительное горение. Типичный твердотопливный двигатель военной ракеты работает на смеси древесного угля - углерода (в качестве горючего), нитрата калия (в качестве окислителя) и серы (в качестве катализатора). Эта комбинация называется черным порохом. Другая комбинация материалов, которую можно использовать, чтобы сделать твердое топливо для ракеты, включает хлорат натрия, хлорат калия (бертолетову соль), порошок магнезии или порошок алюминия. Смесь этих веществ называют белым порохом.

Как работает ракетный двигатель на твердом топливе

Как только происходит воспламенение, топливо начинает гореть с управляемой скоростью, обеспечивая тягу, так как продукты горения в виде горячего газа выбрасываются через сопло (открытое отверстие сзади).

После того как в двигателе поджигается топливо, оно горит до тех пор, пока не закончится. Нет никакой возможности выключить двигатель или остановить горение топлива, пока цикл не завершится. Это можно считать недостатком твердотопливных двигателей в сравнении с двигателями на жидком топливе. Однако в реальных космических аппаратах твердое топливо применяется обычно только для начальных стадий полета, а на конечной стадии оно не используется, поэтому на практике это не становится существенной проблемой.

Загрузка...