Про наши гаджеты. Понятные инструкции для всех

Электрический колебательный контур. Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона

Урок № 48-169 Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона. Колебания - движения или состояния, повто­ряющиеся во времени. Электромагнитные колебания - это колебания электрических и магнитных полей, которые сопро­ вождаются периодическим измене­ нием заряда, тока и напряжения. Колеба­тельный контур - это система, состоящая из катушки индуктив­ности и конденсатора (рис. а). Если конденсатор зарядить и замк­нуть на катушку, то по катушке потечет ток (рис. б). Когда кон­денсатор разрядится, ток в цепи не прекратится из-за самоиндук­ции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет течь в ту же сторону и перезарядит конденсатор (рис. в). Ток в данном направлении прекратится, и процесс повторится в обратном направлении (рис. г).

Таким образом, в колеба­ тельном контуре происхо­ дят электромагнитные колеба­ ния из-за превращения энергии электрического поля конденсато­ ра (W Э =
) в энергию магнит­ного поля катушки с током (W М =
), и наоборот .

Гармонические колебания - периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса.

Уравнение, описывающее свободные электромагнитные колебания, принимает вид

q"= - ω 0 2 q (q"- вторая производная.

Основные характеристики колебательного движения:

Период колебаний - минимальный промежуток времени Т, через который процесс полностью повторяется.

Амплитуда гармонических колебаний - модуль наибольшего значения колеблющейся величины.

Зная период, можно определить частоту колебаний, т. е. число колебаний в единицу времени, например в секунду. Если одно колебание совершается за время Т, то число колебаний за 1 с νопределяется так: ν = 1/Т.

Напомним, что в Международной системе единиц (СИ) частота колебаний равна единице, если за 1 с совершается одно колебание. Единица частоты называется герцем (сокращенно: Гц) в честь немецкого физика Генриха Ге р ц а.

Через промежуток времени, равный периоду Т, т. е. при увеличении аргумента косинуса на ω 0 Т, значение заряда повторяется и косинус принимает прежнее значение. Из курса математики известно, что наименьший период косинуса равен 2л. Следовательно, ω 0 Т =2π, откуда ω 0 = =2πν Таким образом, величина ω 0 - это число колебаний, но не за 1 с, а за 2л с. Она называется циклической или круговой частотой.

Частоту свободных колебаний называют собственной частотой колебательной системы. Часто в дальнейшем для краткости мы будем называть циклическую частоту просто частотой. Отличить циклическую частоту ω 0 от частоты ν можно по обозначениям.

По аналогии с решением дифференциального уравнения для механической колебательной систе­мы циклическая частота свободных электриче­ ских колебаний равна:ω 0 =

Период свободных колебаний в контуре равен: Т==2π
- формула Томсона.

Фаза колебаний (от греческого слова phasis – появление, ступень развития какого-либо явления) – величина φ, стоящая под знаком косинуса или синуса. Выражается фаза в угловых единицах – радианах. Фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени.

Колебания с одинаковыми амплитудами и частотами могут отличаться друг от друга фазами.

Так как ω 0 = , то φ= ω 0 Т=2π . Отношение показывает, какая часть периода прошла от момента начала колебаний. Любому значению времени, выраженному в долях периода, соответствует значение фазы, выраженное в радианах. Так, по прошествии времени t= (четверти периода) φ=, по прошествии половины периода φ = π, по прошествии целого периода φ=2π и т.д.Можно изобразить на графике зависимость


заряда не от времени, а от фазы. На рисунке показана та же косинусоида, что и на предыдущем, но на горизонтальной оси отложены вместо времени

различные значения фазы φ.

Соответствие между механическими и электрическими величинами в колебательных процессах

Механические величины

Задачи .

942(932). Начальный заряд, сообщенный конденсатору колебательного контура, уменьшили в 2 раза. Во сколько раз изменились: а) амплитуда напряжения; б) амплитуда силы то­ка;

в) суммарная энергия электрического поля конденсатора и магнитного поля катушки?

943(933). При увеличении напряжения на конденсаторе колебательного контура на 20 В амплитуда силы тока увели­чилась в 2 раза. Найти начальное напряжение.

945(935). Колебательный контур состоит из конденсатора емкостью С = 400 пФ и катушки индуктивностью L = 10 мГн. Найти амплитуду колебаний силы тока I т , если амплитуда колебаний напряжения U т = 500 В.

952(942). Через какое время (в долях периода t/T) на кон­денсаторе колебательного контура впервые будет заряд, рав­ный половине амплитудного значения?

957(947). Катушку какой индуктивности надо включить в колебательный контур, чтобы при емкости конденсатора 50 пФ получить частоту свободных колебаний 10 МГц?

Колебательный контур. Период свободных колебаний.

1. После того как конденсатору колебательного контура был сообщён заряд q = 10 -5 Кл, в контуре возникли затухающие колебания. Какое количество теплоты выделится в контуре к тому времени, когда колебания в нём полностью затухнут? Ёмкость конденсатора С=0,01мкФ.

2. Колебательный контур состоит из конденсатора ёмкостью 400нФ и катушки индуктивностью 9мкГн. Каков период собственных колебаний контура?

3. Какую индуктивность надо включить в колебательный контур, чтобы при ёмкости 100пФ получить период собственных колебаний 2∙ 10 -6 с.

4. Сравнить жесткости пружин k1/k2 двух маятников с массами грузов соответственно 200г и 400г, если периоды их колебаний равны.

5. Под действием неподвижно висящего груза на пружине её удлинение было равно 6,4см. Затем груз оттянули и отпустили, вследствие чего он начал колебаться. Определить период этих колебаний.

6. К пружине подвесили груз, вывели его из положения равновесия и отпустили. Груз начал колебаться с периодом 0,5с. Определите удлинение пружины после прекращения колебаний. Массу пружины не учитывать.

7. За одно и то же время один математический маятник совершает 25 колебаний, а другой 15. Найти их длины, если один из них на 10см короче другого. 8. Колебательный контур состоит из конденсатора ёмкостью 10мФ и катушки индуктивности 100мГн. Найти амплитуду колебаний напряжения, если амплитуда колебаний силы тока 0,1А 9. Индуктивность катушки колебательного контура 0,5мГн. Требуется настроить этот контур на частоту 1МГц. Какова должна быть ёмкость конденсатора в этом контуре?

Экзаменационные вопросы:

1. Какое из приведенных ниже выражений определяет период свободных колебаний в колебательном контуре? А. ; Б.
; В.
; Г.
; Д. 2 .

2. Какое из приведенных ниже выражений определяет циклическую частоту свободных колебаний в колебательном контуре? А. Б.
В.
Г.
Д. 2π

3. На рисунке представлен график зависимости координаты Х тела, совершающего гармонические колебания вдоль оси ох, от времени. Чему равен период колебания тела?

А. 1 с; Б. 2 с; В. 3 с. Г. 4 с.


4. На рисунке изображён профиль волны в определённый момент времени. Чему равна её длина?

А. 0,1 м. Б. 0,2 м. В. 2 м. Г. 4 м. Д. 5 м.
5. На рисунке представлен график зависимости силы тока через катушку колебательного контура от времени. Чему равен период колебаний силы тока? А. 0,4 с. Б. 0,3 с. В. 0,2 с. Г. 0,1 с.

Д. Среди ответов А-Г нет правильного.


6. На рисунке изображён профиль волны в определённый момент времени. Чему равна её длина?

А. 0,2 м. Б. 0,4 м. В. 4 м. Г. 8 м. Д. 12 м.

7. Электрические колебания в колебательном контуре заданы уравнением q =10 -2 ∙ cos 20t (Кл).

Чему равна амплитуда колебаний заряда?

А . 10 -2 Кл. Б.cos 20t Кл. В.20t Кл. Г.20 Кл. Д.Среди ответов А-Г нет правильного.

8. При гармонических колебаниях вдоль оси ОХ координата тела изменяется по закону X=0,2cos(5t+). Чему равна амплитуда колебаний тела?

А. Xм; Б. 0,2 м;В. сos(5t+) м; (5t+)м; Д.м

9. Частота колебаний источника волны 0,2 с -1 скорость распространения волны 10 м/с. Чему равна, длина волны? А. 0,02 м. Б. 2 м. В. 50 м.

Г. По условию задачи нельзя определить длину волны. Д. Среди ответов А-Г нет правильного.

10. Длина волны 40 м, скорость распространения 20 м/с. Чему равна частота колебаний источника волн?

А. 0,5 с -1 . Б. 2 с -1 . В. 800 с -1 .

Г. По условию задачи нельзя определить частоту колебания источника волн.

Д. Среди ответов А-Г нет правильного.

3

Свободные колебания в контуре.

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов − конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 669) возможны даже свободные колебания, то есть без внешнего источника ЭДС.

рис. 669
 Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром .
 Пусть конденсатор зарядили до заряда qo и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 670: сначала ключ замыкают в положении 1 , при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2 , после чего начинается разрядка конденсатора через катушку.

рис. 670
 Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе U C = q/C равно ЭДС самоиндукции, возникающей в катушке

здесь, «штрих» означает производную по времени.
 Таким образом, оказывается справедливым уравнение

 В этом уравнении содержится две неизвестных функции − зависимости от времени заряда q(t) и силы тока I(t) , поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q / (t) = I(t) , поэтому производная от силы тока является второй производной от заряда

 С учетом этого соотношения, перепишем уравнение (1) в виде

 Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности x // = −ω o 2 x )! Следовательно, решением этого уравнения будет гармоническая функция

с круговой частотой

 Эта формула определяет собственную частоту колебательного контура . Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

 Полученное выражение для периода колебаний называется формулой Дж. Томпсона .
 Как обычно, для определения произвольных параметров A , φ в общем решении (4) необходимо задать начальные условия − заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 670, начальные условия имеют вид: при t = 0 , q = q o , I = 0 , поэтому зависимость заряда конденсатора от времени будет описываться функцией

а сила тока изменяется со временем по закону

 Приведенное рассмотрение колебательного контура является приближенным − любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки).

рис. 671
 Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

который с учетом связи между зарядом и силой тока, преобразуется к форме

 Это уравнение нам также знакомо – это уравнение затухающих колебаний

причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи β = R/L .
 Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе. На рис. 672 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) − угол отклонения маятника φ(t) » и «сила тока I(t) = q / (t) − скорость движения маятника V(t) ».


рис. 672
 Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог − маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания .

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников.

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур или колебательный контур .

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C , катушки индуктивности L и проводника с сопротивлением R

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε . Когда ключ K находится в положении 1, конденсатор заряжается до напряжения. После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L . При определенных условиях этот процесс может иметь колебательный характер

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими , т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U 0 то в начальный момент времени t 1 =0 на обкладках конденсатора установятся амплитудные значения напряжения U 0 и заряда q 0 = CU 0 .

Полная энергия W системы равна энергии электрического поля W эл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I 0 в момент времени t 2 =T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля W м:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t 3 =T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q 0 , напряжение тоже равно первоначальному U = U 0 , а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии W э, запасенной в конденсаторе, в магнитную энергию W м катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q (t ) конденсатора и смещения x (t ) груза от положения равновесия, а также графики тока I (t ) и скорости груза υ(t ) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими , то есть происходят по закону

q (t ) = q 0 cos(ωt + φ 0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний и период колебаний - формула Томпсона

Амплитуда q 0 и начальная фаза φ 0 определяются начальными условиями , то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

q (t ) = q 0 cosω 0 t

U (t ) = U 0 cosω 0 t

Для катушки индуктивности:

i (t ) = I 0 cos(ω 0 t + π/2)

U (t ) = U 0 cos(ω 0 t + π)

Вспомомним основные характеристики колебательного движения :

q 0, U 0 , I 0 - амплитуда – модуль наибольшего значения колеблющейся величины

Т - период – минимальный промежуток времени через который процесс полностью повторяется

ν - Частота – число колебаний в единицу времени

ω - Циклическая частота – число колебаний за 2п секунд

φ - фаза колебаний - величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Рассмотрим следующий колебательный контур. Будем считать, что его сопротивление R настолько мало, что им можно пренебречь.

Полная электромагнитная энергия колебательного контура в любой момент времени будет равняться сумме энергии конденсатора и энергии магнитного поля тока. Для её вычисления будет использоваться следующая формула:

W = L*i^2/2 + q^2/(2*C).

Полная электромагнитная энергия не будет меняться с течение времени, так как потерь энергии на сопротивлении нет. Хотя её составляющие будут меняться, но в сумме всегда будут давать одинаковое число. Это обеспечивается законом сохранения энергии.

Из этого можно получить уравнения описывающие свободные колебания в электрическом колебательном контуре. Уравнение будет иметь следующий вид:

q"’ = -(1/(L*C))*q.

Такое же уравнение, с точностью до обозначений, получается при описании механических колебаний. Учитывая аналогию между этими типами колебаний, мы можем записать формулу описывающую электромагнитные колебания.

Частота и период электромагнитных колебаний

Но сначала разберемся с частотой и периодом электромагнитных колебаний. Значение частоты собственных колебаний, можно опять же получить из аналогии с механическими колебаниями. Коэффициент k/m будет равняться квадрату частоты собственных колебаний.

Следовательно, в нашем случае квадрат частоты свободных колебаний будет равен 1/(L*C)

ω0 = 1/√(L*C).

Отсюда период свободных колебаний:

T = 2*pi/ω0 = 2*pi*√(L*C).

Данная формула получила название формулы Томпсона . Из нее следует, что период колебаний увеличивается при увеличении емкости конденсатора или индуктивности катушки. Эти выводы логичны, так как с увеличением емкости, время потраченное на заряд конденсатора увеличивается, а с увеличением индуктивности – сила тока в цепи будет возрастать медленнее, из-за самоиндукции.

Уравнение колебаний заряда конденсатора описывается следующей формулой:

q = qm*cos(ω0*t), где qm – амплитуда колебаний заряда конденсатора.

Сила тока в цепи колебательного контура, тоже будет совершать гармонические колебания:

I = q’= Im*cos(ω0*t+pi/2).

Здесь Im – амплитуда колебаний силы тока. Заметим, что между колебаниями заряда и силы тока существует разность ваз, равная pi/2.
На рисунке ниже представлены графики этих колебаний.

Опять же по аналогии с механическими колебаниями, где колебания скорости тела опережают на pi/2 колебания координаты этого тела.
В реальных же условиях пренебречь сопротивлением колебательного контура нельзя, и поэтому колебания будут затухающими.

При очень большом сопротивлении R, колебания могут вообще не начаться. В таком случае энергия конденсатора выделиться в виде тепла на сопротивлении.

Загрузка...