Про наши гаджеты. Понятные инструкции для всех

Теория о сумме градусных мер треугольников. Теорема о сумме углов треугольника

Треугольник представляет собой многоугольник, имеющий три стороны (три угла). Чаще всего стороны обозначают маленькими буквами, соответствующими заглавным буквам, которыми обозначают противоположные вершины. В данной статье мы ознакомимся с видами этих геометрических фигур, теоремой, которая определяет, чему равняется сумма углов треугольника.

Виды по величине углов

Различают следующие виды многоугольника с тремя вершинами:

  • остроугольный, у которого все углы острые;
  • прямоугольный, имеющий один прямой угол, при его образующие, называют катетами, а сторона, которая размещена противоположно прямому углу, именуется гипотенузой;
  • тупоугольный, когда один ;
  • равнобедренный, у которого две стороны равные, и называются они боковыми, а третья - основанием треугольника;
  • равносторонний, имеющий все три равные стороны.

Свойства

Выделяют основные свойства, которые характерны для каждого вида треугольника:

  • напротив большей стороны всегда располагается больший угол, и наоборот;
  • напротив равных по величине сторон находятся равные углы, и наоборот;
  • у любого треугольника есть два острых угла;
  • внешний угол больше по сравнению с любым внутренним углом, не смежным с ним;
  • сумма каких-либо двух углов всегда меньше 180 градусов;
  • внешний угол равняется сумме остальных двух углов, которые не межуют с ним.

Теорема о сумме углов треугольника

Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.

Пускай у нас есть произвольный треугольник с вершинами КМН.

Через вершину М проведем КН (еще эту прямую называют прямой Евклида). На ней отметим точку А таким образом, чтоб точки К и А были расположены с разных сторон прямой МН. Мы получаем равные углы АМН и КНМ, которые, как и внутренние, лежат накрест и образовываются секущей МН совместно с прямыми КН и МА, которые являются параллельными. Из этого следует, что сумма углов треугольника, расположенных при вершинах М и Н, равняется размеру угла КМА. Все три угла составляют сумму, которая равна сумме углов КМА и МКН. Поскольку данные углы являются внутренними односторонними относительно параллельных прямых КН и МА при секущей КМ, их сумма составляет 180 градусов. Теорема доказана.

Следствие

Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым. В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° - не больше и не меньше. Вот это и нужно было доказать.

Свойство внешних углов

Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов. Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов - при каждой вершине по два.

Каждая пара имеет равные между собой углы, поскольку они являются вертикальными:

∟1 = ∟4, ∟2 = ∟5, ∟3 = ∟6.

Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,

∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.

Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:

∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).

С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:

∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.

Прямоугольный треугольник

Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов. А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость.

Пускай нам дан треугольник КМН, у которого ∟Н = 90°. Необходимо доказать, что ∟К + ∟М = 90°.

Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° - 90° = 90°. Именно это нам и следовало доказать.

В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:

  • углы, которые лежат против катетов, являются острыми;
  • гипотенуза треугольна больше любого из катетов;
  • сумма катетов больше гипотенузы;
  • катет треугольника, который лежит напротив угла 30 градусов, в два раза меньше гипотенузы, то есть равняется ее половине.

Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.

Сумма углов равнобедренного треугольника

Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.

Возьмем треугольник КМН, который является равнобедренным, КН - его основание.

От нас требуется доказать, что ∟К = ∟Н. Итак, допустим, что МА - это биссектриса нашего треугольника КМН. Треугольник МКА с учетом первого признака равенства равен треугольнику МНА. А именно по условию дано, что КМ = НМ, МА является общей стороной, ∟1 = ∟2, поскольку МА - это биссектриса. Используя факт равенства этих двух треугольников, можно утверждать, что ∟К = ∟Н. Значит, теорема доказана.

Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.

Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:

  • в которая была опущена на основание, является одновременно медианой, биссектрисой угла, который находится между равными сторонами, а также его основания;
  • медианы (биссектрисы, высоты), которые проведены к боковым сторонам такой геометрической фигуры, равны.

Равносторонний треугольник

Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.

Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н. Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.

Как видно из выше приведенного доказательства на основании теоремы, сумма углов как и сумма углов любого другого треугольника, составляет 180 градусов. Снова доказывать эту теорему нет необходимости.

Существуют еще такие свойства, характерные для равностороннего треугольника:

  • медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
  • если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
  • если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
  • площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.

Тупоугольный треугольник

Согласно определению один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов. Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам. Опять-таки, данная теорема не нуждается в повторном доказательстве.

“Скажи мне – и я забуду,
Покажи мне – и я запомню,
Вовлеки меня – и я научусь”
Восточная пословица

Цель: Доказать теорему о сумме углов треугольника, упражнять в решении задач, используя данную теорему, развивать познавательную деятельность учащихся, используя дополнительный материал из разных источников, воспитывать умение слушать других.

Оборудование: Транспортир, линейка, модели треугольников, полоска настроения.

ХОД УРОКА

1. Организационный момент.

Отметьте на ленте настроения свое состояние на начало урока.

2. Повторение.

Повторить понятия, которые будут использованы при доказательстве теоремы: свойства углов при параллельных прямых, определение развернутого угла, градусная мера развернутого угла.

3. Новый материал.

3.1. Практическая работа.

У каждого ученика находятся три модели треугольника: остроугольный, прямоугольный и тупоугольный. Предлагается измерить углы треугольника и найти их сумму. Проанализировать результат. Могут получиться значения 177, 178, 179, 180, 181, 182, 183 градуса. Посчитайте среднее арифметическое (=180°) Предлагается вспомнить, когда углы имеют градусную меру 180 градусов. Ученики вспоминают, что это развернутый угол и сумма односторонних углов.

Давайте попробуем получить сумму углов треугольника используя оригами.

Историческая справка

Оригами (яп., букв.: “сложенная бумага”) - древнее искусство складывания фигурок из бумаги. Искусство оригами своими корнями уходит в древний Китай, где и была открыта бумага.

3.2. Доказательство теоремы из учебника Атанасяна Л.С.

Теорема о сумме углов треугольника.

Докажем одну из важнейших теорем геометрии – теорему о сумме углов треугольника.

Теорема. Сумма углов треугольника равна 180°.

Доказательство. Рассмотрим произвольный треугольник ABC и докажем, что A + B + C= 180°.

Проведем через вершину В прямую а, параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 - накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4 равен углу 1, угол 5 равен углу 3.

Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е. угол 4+угол 2+угол 5=180°. Отсюда, учитывая предыдущие равенства, получаем: угол 1 + угол 2+ угол 3= 180°, или A + B+ C=180°. Теорема доказана.

3.3. Доказательство теоремы из учебника Погорелова А. В.

Доказать: A + B + C = 180 °

Доказательство:

1. Проведем через вершину B прямую BD // AC

2. DBC=ACB, как накрест лежащие при AC//BD и секущей BC.

3. ABD =ACB +CBD

Отсюда, A + B+C = ABD+BAC

4. ABD и BAC – односторонние при BD // AC и секущей AB, значит их сумма равна 180 ° , т.е. А+B + C=180 ° , что и требовалось доказать.

3. 4. Доказательство теоремы из учебника Киселева А.Н., Рыбкина Н.А.

Дано: АВС

Доказать: А+B +C=180 °

Доказательство:

1. Продолжим сторону АС. Проведем СЕ//АВ

2. А=ЕСД, как соответственные при АВ//СЕ и АД - секущей

3. В=ВСЕ, как накрест лежащие при АВ//СЕ и ВС - секущей.

4. ЕСД+ВСЕ+С=180 ° , значит А + В + С = 180 ° , что и требовалось доказать.

3.5. Следствия 1. В любом треугольнике все углы острые, либо два угла острых, а третий тупой или прямой.

Следствие 2.

Внешний угол треугольника равен сумме двух других углов треугольника, не смежных с ним.

3.6. Теорема позволяет классифицировать треугольники не только по сторонам, но и по углам.

Вид треугольника Равнобедренный Равносторонний Разносторонний
прямоугольный
тупоугольный
остроугольный

4. Закрепление.

4.1. Решение задач по готовым чертежам.

Найти неизвестные углы треугольника.

4.2. Проверка знаний.

1. В завершении нашего урока, ответьте на вопросы:

Существуют ли треугольники с углами:

а) 30, 60, 90 градусов,

b) 46, 4, 140 градусов,

с) 56, 46, 72 градуса?

2. Может ли в треугольнике быть:

а) два тупых угла,

b) тупой и прямой углы,

с) два прямых угла?

3. Определить вид треугольника, если один угол – 45 градусов, другой – 90 градусов.

4. В каком треугольнике сумма углов больше: в остроугольном, тупоугольном или прямоугольном?

5. Можно ли измерить углы любого треугольника?

Это вопрос-шутка, т.к. существует Бермудский треугольник, находящийся в Атлантическом океане между Бермудскими островами, государством Пуэрто-Рико и полуостровом Флорида, у которого невозможно измерить углы. (Приложение 1)

5. Итог урока.

Отметьте на ленте настроения свое состояние на конец урока.

Домашнее задание.

П. 30–31; № 223 а, б; № 227 а; рабочая тетрадь № 116, 118.

1) Сумма углов треугольника равна 180°.

Доказательство

Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.

Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним

Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
∠ ABС + ∠ BCA + ∠ CAB = 180 º.
Отсюда следует
∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
Теорема доказана.

Из теоремы следует:
Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
3)
Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
4)
тупоугольный - больше 90 градусов
остроугольный - меньше 90 градусов
5) а. Треугольник, у которого один из углов равен 90 градусов.
б. Катеты и гипотенуза
6)
6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
7)
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
8) --- тоже самое, что и 7
9)
сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
10)
Сумма углов любого треугольника равна 180 градусам.
Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
11)
1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.

Тип урока: изучение нового материала.

Цели урока:

Образовательные:

  • вместе с ребятами “открыть” и доказать теорему о сумме углов треугольника;
  • обобщить и систематизировать изученный материал по данной теме;
  • познакомить учащихся с историческим материалом по изучаемой теме;
  • привить интерес к математике посредством включения в урок игровых технологий;
  • сформировать навыки, умения в решении геометрических задач;

Развивающие:

  • развить внимание, память, речь, логическое мышление, самостоятельность;
  • рассмотреть нескольких способов доказательства теоремы, обобщить с использованием элементов исследования, развить математическую речь;
  • сформировать умения сравнивать, обобщать факты и понятия;
  • развить сотрудничество при работе в парах.

Воспитательные:

  • воспитывать стремление достигать поставленную цель; чувство ответственности, уверенности в себе, умение работать в коллективе;
  • воспитывать такие черты характера, как настойчивость, целеустремленность, трудолюбие и дисциплинированность;
  • привить навыки аккуратности при построении чертежей;
  • сформировать гуманные отношения на уроке.

Оборудование: ПК, мультимедийное оборудование, планшеты, листы задания с домашней работой, картонные треугольники, раздаточный материал.

Применяемые формы обучения: Фронтальная, индивидуальная работа учащихся и работа в парах. Для активизации внимания, воображения введены игровые моменты.

Структура урока:

  1. Организация начала урока – 2 мин.
  2. Определение задач урока – 1 мин.
  3. Подготовка к основному этапу урока -5 мин.
  4. Актуализация ранее изученного материала – 4 мин.
  5. Ознакомление с новым материалом – 10 мин
  6. Физкультминутка – 1 мин
  7. Первичная проверка понимания – 5 мин.
  8. Усвоение знаний. Решение задач – 13 мин.
  9. Подведение итогов урока. Рефлексия – 2 мин.
  10. Информация о домашнем задании – 2 мин.

Ход урока

1. Организационный момент.

Приветствие. Проверка готовности учащихся к уроку. На доске тема урока и высказывание:

…Как для смертных истина ясна,
Что в треугольник двум тупым не влиться.
Данте А.

2. Определение задач урока.

Ребята, как вы думаете, о какой фигуре пойдет речь на этом уроке? Какие задачи урока?

  • “открыть” и доказать теорему о сумме углов треугольника;
  • научить решать задачи, применяя полученные знания.

3. Подготовка к основному этапу урока.

Сформулируйте определение треугольника. (Треугольник это геометрическая фигура, образования тремя точками, не лежащими на одной прямой, и отрезками, попарно соединяющими эти точки.)

Назовите элементы треугольника. (Углы, стороны, вершины.)

Назовите названия треугольников по сторонам. (Равносторонний, равнобедренный, разносторонний.)

Один из учащихся выбирает и показывает классу треугольники, заготовленные и лежащие на столе у учителя.

Треугольники различаются и по углам. Попробуем назвать треугольники по углам. (Другой учащийся выбирает: остроугольный, тупоугольный и прямоугольный треугольники.)

Давайте ответим на ряд вопросов:

Может ли треугольник иметь:

  1. два прямых угла;
  2. два тупых угла;
  3. один прямой и один тупой угол?

К доске вызывается один ученик и выполняет следующие рисунки:

Далее идет «коллективное обсуждение». Построенные лучи не пересекаются, значит, треугольник не получится. Сумма односторонних углов в первом случае равна 180°, во втором и третьем случае больше, чем 180°. В первом случае прямые параллельны, а во втором и третьем случае прямые расходятся. Делаем вывод: треугольники не могут иметь два прямых, два тупых. А также в треугольнике не может быть одновременно один тупой и один прямой углы. Слайд 3.

Опять посмотрим на модели треугольников и сделаем вывод: в прямоугольном треугольнике один угол прямой, а два угла острых, в тупоугольном треугольнике один угол тупой, а два острых, в остроугольном треугольнике все углы острые. Но теоретически мы на этот вопрос ответить не можем, пока не узнаем, чему равна сумма углов треугольника.

Итак, о треугольнике мы знаем уже достаточно много. А как вы думаете, чему равна сумма углов любого треугольника? (Заслушать ответы). Давайте проверим, верны ли ваши предположения с помощью практической работы.

Практическая работа (способствует актуализации знаний и навыков самопознания). (Работа в парах.) Слайды 4-5.

У каждого из вас есть на парте по одному треугольнику разных цветов. Ребята, мы с вами измеряли углы и с помощью транспортира и находили их сумму еще в 5 классе. Сумма углов у всех получалась разная (так может получаться потому, что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).

Я предлагаю найти сумму углов треугольника двумя другими способами: возьмите треугольники, которые лежат у вас на парте. Они желтого или розового цвета. Обозначьте углы треугольника числами 1, 2, 3.

Учащиеся с желтыми треугольниками: оторвите два угла треугольника и приложите их к сторонам третьего угла так, чтобы все вершины были в одной точке. Замечаем, что все углы треугольника в сумме образуют развернутый угол.

Учащиеся с розовыми треугольниками: сложите углы во внутрь треугольника. Заметим, что перегибать треугольник надо по прямой параллельной к стороне, того угла который мы будем сгибать первым, а данный угол должен касаться данной стороны. Замечаем, что все углы треугольника в сумме образуют развернутый угол.

Чему равна градусная мера развернутого угла?

К какому выводу мы пришли?

Сумма углов треугольника равна 180 градусов.

Выполнив практическую работу, мы установили, что сумма углов треугольника равна 180 градусов.

В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой.

Какую теорему нам нужно доказать?

Сумма углов треугольника равна 180 градусов.

4. Этап подготовки учащихся к активному и сознательному усвоению новых знаний.

Слайды 6-7.

Прежде, чем доказать эту теорему решим две задачи устно они помогут нам при доказательстве теоремы:

5. Этап усвоения новых знаний, умений, навыков.

Слайды 8-9

(Возможны три способа доказательства).

Доказательство теоремы (развивает способность анализировать, обобщать и делать логические выводы, используя ранее изученный материал).

Один учащийся доказывает теорему у доски, по ходу комментируя свои действия. Остальные учащиеся работают в тетрадях. В случае неточности, учитель проводит корректировку.

Учитель: Что нам дано?

Учащийся: Дан треугольник.

Учитель: Постройте у себя в тетрадях произвольный треугольник и обозначьте его вершины А, В и С. Что требуется доказать?

Учащийся: Что сумма углов треугольника равна 180°.

Дано: ∆ ABC
Доказать: A+B+C=180°

План доказательства:
1) Через вершину B проведем прямую DE || AC
2) Доказать, что 4 =1 , 5 = 3
3) Доказать, что если 4+2+5=180°, значит, 1+2+3=180° или в ∆ ABC A+B+C=180°

Но такой способ доказательства не единственный. Первое доказательство было дано еще Пифагором (5 в. до н.э.) В первой книге «Начала» Евклид излагает другое доказательство теоремы о сумме углов треугольника. Слайд 10.

Ребята доказывают устно:

Доказательство:
1) Через вершину B проведем луч BD|| AC.
2) 4и 3- накрест лежащие при BD||AC и секущей BC.
3) BD|| AC и AB- секущая, то 1+ABD=180° – односторонние углы.
4) тогда 1+2+4=180° , т.к 4=3 ,то 1+2+3=180° или A+B+C=180°

Попробуйте доказать дома эту теорему, используя чертеж учеников Пифагора. (Ребятам раздается лист с чертежами всех трех доказательств на дом.) Слайд 11.

6. Физкультминутка.

Слайды 12-14.

7. Закрепление изученного материала.

Теперь, пользуясь теоремой, можно обосновать, почему в треугольнике не может быть двух прямых углов, двух тупых углов, двух углов, один из которых тупой, а другой прямой.

Следствие из теоремы о сумме углов треугольника (выводится учащимися самостоятельно; это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее).

В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой .

Если в треугольнике все углы острые, то он называется остроугольным . Если один из углов треугольника тупой, то он называется тупоугольным . Если один из углов треугольника прямой, то он называется прямоугольным .

Устная работа: (планшеты) Слайд 15.

Ответьте на вопросы: Слайд 16.

  1. Если один из углов треугольника прямой, то какие будут два других угла?
  2. Если треугольник прямоугольный, то чему равна сумма острых углов треугольника?
  3. Если один из углов треугольника тупой, то чему равна сумма двух других углов треугольника?
  4. 9. Задание на дом.

    1. Раздаточный маериал: три чертежа для доказательства. (приложение 1 )
    2. П. 30-31, стр. 70, №223(а,б), 224, 225, 230

    10. Итог урока.

    Рефлексия:

    Продолжите фразу:

  • “Сегодня на уроке я узнал…”
  • “Сегодня на уроке я научился…”
  • “Сегодня на уроке я познакомился…”
  • “Сегодня на уроке я повторил…”
  • “Сегодня на уроке я закрепил…”

То, что «Сумма углов любого треугольника в Эвклидовой геометрии равна 180 градусов» можно просто запомнить. Если запомнить не просто, можно провести парочку экспериментов для лучшего запоминания.

Эксперимент первый

Начертите на листе бумаги несколько произвольных треугольников, например:

  • с произвольными сторонами;
  • равнобедренный треугольник;
  • прямоугольный треугольник.

Обязательно пользуйтесь линейкой. Теперь нужно вырезать полученные треугольники, делая это ровно по начерченным линиям. Закрасьте углы каждого треугольника цветным карандашом или фломастером. Например, в первом треугольники все углы будут красными, во втором - синими, третьем – зелеными. http://bit.ly/2gY4Yfz

От первого треугольника отрежьте все 3 угла и вершинами соедините их в одно точке, так, чтобы ближайшие стороны каждого угла соединялись. Как видно, три угла треугольника образовали развернутый угол, который равен 180 градусов. То же самое проделайте с двумя другими треугольниками – результат будет тот же. http://bit.ly/2zurCrd

Эксперимент второй

Чертим произвольный треугольник ABC. Выбираем любую вершину (например, C) и через нее проводим прямую DE, параллельную противоположной стороне (AB). http://bit.ly/2zbYNzq

Получаем следующее:

  1. Углы BAC и ACD равны, как внутренние накрестлежащие относительно AC;
  2. Углы ABC и BCE равны, как внутренние накрестлежащие относительно BC;
  3. Видим, что углы 1, 2 и 3 – углы треугольника, соединенные в одной точке образовали развернутый угол DCE, который равен 180 градусов.

Теорема о сумме углов треугольника гласит, что сумма всех внутренних углов любого треугольника равна 180°.

Пусть внутренние углы треугольника равны a, b и c, тогда:

a + b + c = 180°.

Из данной теории можно сделать вывод, что сумма всех внешних углов любого треугольника равна 360°. Так как внешний угол является смежным углом с внутренним, то их сумма равна 180°. Пусть внутренние углы треугольника равны a, b и c, тогда внешние углы при этих углах равна 180° - a, 180° - b и 180° - c.

Найдем сумму внешних углов треугольника:

180° - a + 180° - b + 180° - c = 540° - (a + b + c) = 540° - 180° = 360°.

Ответ: сумма внутренних углов треугольника равна 180°; сумма внешних углов треугольника равна 360°.

Загрузка...