Про наши гаджеты. Понятные инструкции для всех

Расчет тангенса онлайн. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол - это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол - меньший 90 градусов.

Тупой угол - больший 90 градусов. Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

Катеты - стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы .

Треугольник с углами и - равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников - то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом - в следующей статье.

Тангенс - тригонометрическая функция, численно равная соотношению длин противолежащего и прилежащего катета. Тангенс широко используется во многих современных приложениях.

История вопроса

Тригонометрия берет свое начало в , когда ученые изучали свойства сторон прямоугольного треугольника. Именно тогда была сформулирована теорема, постулирующая соотношение катетов и гипотенузы, доказанная только через полторы тысячи лет самосским математиком Пифагором. Изначально использовался только синус, который рассчитывался как половина хорды окружности, описанной вокруг .

Тангенс появился гораздо позднее, когда перед учеными возникла задача определения длины тени, отбрасываемой объектами, стоящими перпендикулярно к поверхности земли. Тангенс был введен арабским математиком Абу-ль-Вафой в десятом веке. Восточный ученый составил специальные таблицы для определения тангенсов и котангенсов, однако это открытие так и не попало на европейский континент.

В Европе тангенсы были вновь открыты только в XIV веке: немецкий математик Иоганн Мюллер Региомонтан использовал функцию в астрономических расчетах. Термин «тангенс» произошел от латинского слова tanger, что означает «касание» и был введен в обиход в конце XVI века. Данный термин использовался для описания линии тангенсов, то есть касательной к единичной окружности. Региомонтан доказал теорему тангенсов, а также составил специальные таблицы значений функции, которые подошли как для плоской, так и для сферической геометрии.

Определение тангенса

Геометрически тангенс определяется как соотношение противолежавшего катета к прилежащему. Функция всегда рассчитывается для угла и не зависит от длин сторон. Пусть у нас есть треугольник со сторонами A, B и C, где C - гипотенуза. Тангенс угла AC будет рассчитываться как соотношение противолежащего катета B к прилежащему A или tgAC = B/A. Для угла BC тангенс рассчитывается как дробь, в числителе которой длина противолежащего углу катета A к прилежащему B, что математически записывается как tgBC = A/B. Угол AB образуется при двумя катетами, поэтому его невозможно посчитать. Катеты - стороны, образующие прямой угол, поэтому для угла в 90 градусов тангенс не существует.

Помимо геометрического определения, тангенс легко выразить через другие тригонометрические функции. Так, для угла A тангенс можно выразить при помощи отношения синуса и косинуса:

tgA = sinA / cosA.

Наша программа позволяет определить численное значение тангенса для любого значения угла. Для этого достаточно выбрать в меню соответствующую функцию и ввести в ячейку «Угол» величину угла в градусах или радианах. Если необходимо найти угол по известному значению тригонометрической функции, используйте функцию арктангенса. Для этого введите значение тангенса в соответствующую ячейку, после чего калькулятор вернет вам величину угла.

Рассмотрим пару примеров

Вычисление угла

Пусть в школьной задаче задан прямоугольный треугольник со сторонами A = 5 см, B = 12 см, C = 13 см. Требуется найти величины всех углов. Итак, очевидно, что угол AB, то есть угол, образуемый двумя катетами - прямой. Это известно из самого определения катетов. Теперь мы можем найти тангенс угла BC, который численно будет равен дроби, в числителе которой противолежащий катет A, а в знаменателе - прилежащий B. Следовательно, tgBC = A/B = 5/12 = 0,416. Зная тангенс, мы легко можем вычислить соответствующий угол при помощи онлайн-калькулятора. Для это выберем в меню функцию тангенса и введем значение 0,416 в ячейку tgα. Программа мгновенно отобразит величину угла, равную 22,58 градуса. Вычислить последний угол не составит труда, так согласно постулату о сумме углов треугольника, угол AC = 180 − 90 − 22,58 = 67,42 градуса.

Вычисление тангенса

В школьных задачах чаще всего используются стандартные углы, поэтому школьникам важно знать значения основных тригонометрических функций для этих углов буквально наизусть. Давайте при помощи калькулятора определим значения тангенсов для наиболее распространенных в задачах углов:

  • tg30 = 0,577;
  • tg45 = 1;
  • tg60 = 1,732;
  • tg90 - не рассчитывается;
  • tg120 = -1,732;
  • tg150 = -0,577;
  • tg180 = 0.

Выше мы выяснили, почему тангенс не рассчитывается для значений 90 градусов. Еще одно интересное значение - угол в 45 градусов. Почему тангенс равен 1? Ответ очевиден, ведь если в прямоугольном треугольнике один угол равен 45 градусам, то и второй имеет такую же величину. Следовательно, треугольник равнобедренный, его катеты имеют одинаковую длину, а их соотношение в любом случае будет равно 1.

Заключение

Тригонометрия - сложная наука, которая не находит практически никакого применения в повседневной жизни. Однако без тригонометрии не было бы современных технологий, поэтому специалистам прикладных наук без нее никуда. Используйте наши онлайн-калькуляторы для расчета значений тригонометрических функций.

Справочные данные по тангенсу (tg x) и котангенсу (ctg x). Геометрическое определение, свойства, графики, формулы. Таблица тангенсов и котангенсов, производные, интегралы, разложения в ряды. Выражения через комплексные переменные. Связь с гиперболическими функциями.

Геометрическое определение




|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .

Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

Тангенс

Где n - целое.

В западной литературе тангенс обозначается так:
.
;
;
.

График функции тангенс, y = tg x


Котангенс

Где n - целое.

В западной литературе котангенс обозначается так:
.
Также приняты следующие обозначения:
;
;
.

График функции котангенс, y = ctg x


Свойства тангенса и котангенса

Периодичность

Функции y = tg x и y = ctg x периодичны с периодом π .

Четность

Функции тангенс и котангенс - нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

y = tg x y = ctg x
Область определения и непрерывность
Область значений -∞ < y < +∞ -∞ < y < +∞
Возрастание -
Убывание -
Экстремумы - -
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 -

Формулы

Выражения через синус и косинус

; ;
; ;
;

Формулы тангенса и котангенс от суммы и разности



Остальные формулы легко получить, например

Произведение тангенсов

Формула суммы и разности тангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Выражения через комплексные числа

Выражения через гиперболические функции

;
;

Производные

; .


.
Производная n-го порядка по переменной x от функции :
.
Вывод формул для тангенса > > > ; для котангенса > > >

Интегралы

Разложения в ряды

Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

При .

при .
где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
;
;
где .
Либо по формуле Лапласа:


Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

Арктангенс, arctg


, где n - целое.

Арккотангенс, arcctg


, где n - целое.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Тангенс угла, как и другие тригонометрические функции, выражает зависимость между сторонами и углами прямоугольного треугольника. Применение тригонометрических функций позволяет заменить в расчетах величины в градусном измерении на линейные параметры.

Инструкция

При наличии транспортира заданный угол треугольника можно измерить и по таблице Брадиса найти значение тангенса. Если нет возможности определить градусную величину угла, определите его тангенс с помощью замеров линейных величин фигуры. Для этого сделайте вспомогательные построения: из произвольной точки на одной из сторон угла опустите перпендикуляр на другую сторону. Измерьте расстояние между концами перпендикуляра на сторонах угла, запишите результат измерения в числитель дроби. Теперь измерьте расстояние от вершины заданного угла до вершины прямого угла, т. е. до точки на стороне угла, в которую был опущен перпендикуляр. Полученное число запишите в знаменатель дроби. Составленная по результатам измерений дробь равна тангенсу угла.

Тангенс угла можно определить расчетным путем как отношение противолежащего ему катета к прилежащему. Также можно вычислить тангенс через прямые тригонометрические функции рассматриваемого угла - синус и косинус. Тангенс угла равен отношению синуса этого угла к его косинусу. В отличие от непрерывных функций синуса и косинуса, тангенс имеет разрыв и не определен при величине угла 90 градусов. При нулевом значении угла его тангенс равен нулю. Из соотношений прямоугольного треугольника очевидно, что угол 45 градусов имеет тангенс, равный единице, поскольку катеты такого прямоугольного треугольника равны.

Что такое синус, косинус, тангенс, котангенс угла поможет понять прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона \(AC \) ); катеты – это две оставшиеся стороны \(AB \) и \(BC \) (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла \(BC \) , то катет \(AB \) – это прилежащий катет, а катет \(BC \) - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике:

\[ \sin \beta =\dfrac{BC}{AC} \]

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике:

\[ \cos \beta =\dfrac{AB}{AC} \]

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике:

\[ tg\beta =\dfrac{BC}{AB} \]

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике:

\[ ctg\beta =\dfrac{AB}{BC} \]

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла \(\beta \) . По определению, из треугольника \(ABC \) : \(\cos \beta =\dfrac{AB}{AC}=\dfrac{4}{6}=\dfrac{2}{3} \) , но ведь мы можем вычислить косинус угла \(\beta \) и из треугольника \(AHI \) : \(\cos \beta =\dfrac{AH}{AI}=\dfrac{6}{9}=\dfrac{2}{3} \) . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника \(ABC \) , изображённого ниже на рисунке, найдём \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \) .

\(\begin{array}{l}\sin \ \alpha =\dfrac{4}{5}=0,8\\\cos \ \alpha =\dfrac{3}{5}=0,6\\tg\ \alpha =\dfrac{4}{3}\\ctg\ \alpha =\dfrac{3}{4}=0,75\end{array} \)

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла \(\beta \) .

Ответы: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac{4}{3} \) .

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным \(1 \) . Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси \(x \) (в нашем примере, это радиус \(AB \) ).

Каждой точке окружности соответствуют два числа: координата по оси \(x \) и координата по оси \(y \) . А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник \(ACG \) . Он прямоугольный, так как \(CG \) является перпендикуляром к оси \(x \) .

Чему равен \(\cos \ \alpha \) из треугольника \(ACG \) ? Всё верно \(\cos \ \alpha =\dfrac{AG}{AC} \) . Кроме того, нам ведь известно, что \(AC \) – это радиус единичной окружности, а значит, \(AC=1 \) . Подставим это значение в нашу формулу для косинуса. Вот что получается:

\(\cos \ \alpha =\dfrac{AG}{AC}=\dfrac{AG}{1}=AG \) .

А чему равен \(\sin \ \alpha \) из треугольника \(ACG \) ? Ну конечно, \(\sin \alpha =\dfrac{CG}{AC} \) ! Подставим значение радиуса \(AC \) в эту формулу и получим:

\(\sin \alpha =\dfrac{CG}{AC}=\dfrac{CG}{1}=CG \)

Так, а можешь сказать, какие координаты имеет точка \(C \) , принадлежащая окружности? Ну что, никак? А если сообразить, что \(\cos \ \alpha \) и \(\sin \alpha \) - это просто числа? Какой координате соответствует \(\cos \alpha \) ? Ну, конечно, координате \(x \) ! А какой координате соответствует \(\sin \alpha \) ? Всё верно, координате \(y \) ! Таким образом, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \) .

А чему тогда равны \(tg \alpha \) и \(ctg \alpha \) ? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что \(tg \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{y}{x} \) , а \(ctg \alpha =\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{x}{y} \) .

А что, если угол будет больше ? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник \({{A}_{1}}{{C}_{1}}G \) : угол (как прилежащий к углу \(\beta \) ). Чему равно значение синуса, косинуса, тангенса и котангенса для угла \({{C}_{1}}{{A}_{1}}G=180{}^\circ -\beta \ \) ? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

\(\begin{array}{l}\sin \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{C}_{1}}G}{1}={{C}_{1}}G=y;\\\cos \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{A}_{1}}G}{1}={{A}_{1}}G=x;\\tg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}G}=\dfrac{y}{x};\\ctg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{C}_{1}}G}=\dfrac{x}{y}\end{array} \)

Ну вот, как видишь, значение синуса угла всё так же соответствует координате \(y \) ; значение косинуса угла – координате \(x \) ; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси \(x \) . До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке – отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет \(360{}^\circ \) или \(2\pi \) . А можно повернуть радиус-вектор на \(390{}^\circ \) или на \(-1140{}^\circ \) ? Ну конечно, можно! В первом случае, \(390{}^\circ =360{}^\circ +30{}^\circ \) , таким образом, радиус-вектор совершит один полный оборот и остановится в положении \(30{}^\circ \) или \(\dfrac{\pi }{6} \) .

Во втором случае, \(-1140{}^\circ =-360{}^\circ \cdot 3-60{}^\circ \) , то есть радиус-вектор совершит три полных оборота и остановится в положении \(-60{}^\circ \) или \(-\dfrac{\pi }{3} \) .

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на \(360{}^\circ \cdot m \) или \(2\pi \cdot m \) (где \(m \) – любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол \(\beta =-60{}^\circ \) . Это же изображение соответствует углу \(-420{}^\circ ,-780{}^\circ ,\ 300{}^\circ ,660{}^\circ \) и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой \(\beta +360{}^\circ \cdot m \) или \(\beta +2\pi \cdot m \) (где \(m \) – любое целое число)

\(\begin{array}{l}-420{}^\circ =-60+360\cdot (-1);\\-780{}^\circ =-60+360\cdot (-2);\\300{}^\circ =-60+360\cdot 1;\\660{}^\circ =-60+360\cdot 2.\end{array} \)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

\(\begin{array}{l}\sin \ 90{}^\circ =?\\\cos \ 90{}^\circ =?\\\text{tg}\ 90{}^\circ =?\\\text{ctg}\ 90{}^\circ =?\\\sin \ 180{}^\circ =\sin \ \pi =?\\\cos \ 180{}^\circ =\cos \ \pi =?\\\text{tg}\ 180{}^\circ =\text{tg}\ \pi =?\\\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =?\\\sin \ 270{}^\circ =?\\\cos \ 270{}^\circ =?\\\text{tg}\ 270{}^\circ =?\\\text{ctg}\ 270{}^\circ =?\\\sin \ 360{}^\circ =?\\\cos \ 360{}^\circ =?\\\text{tg}\ 360{}^\circ =?\\\text{ctg}\ 360{}^\circ =?\\\sin \ 450{}^\circ =?\\\cos \ 450{}^\circ =?\\\text{tg}\ 450{}^\circ =?\\\text{ctg}\ 450{}^\circ =?\end{array} \)

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

\(\begin{array}{l}\sin \alpha =y;\\cos\alpha =x;\\tg\alpha =\dfrac{y}{x};\\ctg\alpha =\dfrac{x}{y}.\end{array} \)

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в \(90{}^\circ =\dfrac{\pi }{2} \) соответствует точка с координатами \(\left(0;1 \right) \) , следовательно:

\(\sin 90{}^\circ =y=1 \) ;

\(\cos 90{}^\circ =x=0 \) ;

\(\text{tg}\ 90{}^\circ =\dfrac{y}{x}=\dfrac{1}{0}\Rightarrow \text{tg}\ 90{}^\circ \) - не существует;

\(\text{ctg}\ 90{}^\circ =\dfrac{x}{y}=\dfrac{0}{1}=0 \) .

Дальше, придерживаясь той же логики, выясняем, что углам в \(180{}^\circ ,\ 270{}^\circ ,\ 360{}^\circ ,\ 450{}^\circ (=360{}^\circ +90{}^\circ)\ \) соответствуют точки с координатами \(\left(-1;0 \right),\text{ }\left(0;-1 \right),\text{ }\left(1;0 \right),\text{ }\left(0;1 \right) \) , соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

\(\displaystyle \sin \ 180{}^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180{}^\circ =\cos \ \pi =-1 \)

\(\text{tg}\ 180{}^\circ =\text{tg}\ \pi =\dfrac{0}{-1}=0 \)

\(\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =\dfrac{-1}{0}\Rightarrow \text{ctg}\ \pi \) - не существует

\(\sin \ 270{}^\circ =-1 \)

\(\cos \ 270{}^\circ =0 \)

\(\text{tg}\ 270{}^\circ =\dfrac{-1}{0}\Rightarrow \text{tg}\ 270{}^\circ \) - не существует

\(\text{ctg}\ 270{}^\circ =\dfrac{0}{-1}=0 \)

\(\sin \ 360{}^\circ =0 \)

\(\cos \ 360{}^\circ =1 \)

\(\text{tg}\ 360{}^\circ =\dfrac{0}{1}=0 \)

\(\text{ctg}\ 360{}^\circ =\dfrac{1}{0}\Rightarrow \text{ctg}\ 2\pi \) - не существует

\(\sin \ 450{}^\circ =\sin \ \left(360{}^\circ +90{}^\circ \right)=\sin \ 90{}^\circ =1 \)

\(\cos \ 450{}^\circ =\cos \ \left(360{}^\circ +90{}^\circ \right)=\cos \ 90{}^\circ =0 \)

\(\text{tg}\ 450{}^\circ =\text{tg}\ \left(360{}^\circ +90{}^\circ \right)=\text{tg}\ 90{}^\circ =\dfrac{1}{0}\Rightarrow \text{tg}\ 450{}^\circ \) - не существует

\(\text{ctg}\ 450{}^\circ =\text{ctg}\left(360{}^\circ +90{}^\circ \right)=\text{ctg}\ 90{}^\circ =\dfrac{0}{1}=0 \) .

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

\(\left. \begin{array}{l}\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac{y}{x};\\ctg \alpha =\dfrac{x}{y}.\end{array} \right\}\ \text{Надо запомнить или уметь выводить!!!} \)

А вот значения тригонометрических функций углов в и \(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4} \) , приведённых ниже в таблице, необходимо запомнить:

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений:

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (\(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4},\ 60{}^\circ =\dfrac{\pi }{3} \) ), а также значение тангенса угла в \(30{}^\circ \) . Зная эти \(4 \) значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

\(\begin{array}{l}\sin 30{}^\circ =\cos \ 60{}^\circ =\dfrac{1}{2}\ \ \\\sin 45{}^\circ =\cos \ 45{}^\circ =\dfrac{\sqrt{2}}{2}\\\sin 60{}^\circ =\cos \ 30{}^\circ =\dfrac{\sqrt{3}}{2}\ \end{array} \)

\(\text{tg}\ 30{}^\circ \ =\dfrac{1}{\sqrt{3}} \) , зная это можно восстановить значения для \(\text{tg}\ 45{}^\circ , \text{tg}\ 60{}^\circ \) . Числитель «\(1 \) » будет соответствовать \(\text{tg}\ 45{}^\circ \ \) , а знаменатель «\(\sqrt{\text{3}} \) » соответствует \(\text{tg}\ 60{}^\circ \ \) . Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего \(4 \) значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота? Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки. Вот, к примеру, перед нами такая окружность:

Нам дано, что точка \(K({{x}_{0}};{{y}_{0}})=K(3;2) \) - центр окружности. Радиус окружности равен \(1,5 \) . Необходимо найти координаты точки \(P \) , полученной поворотом точки \(O \) на \(\delta \) градусов.

Как видно из рисунка, координате \(x \) точки \(P \) соответствует длина отрезка \(TP=UQ=UK+KQ \) . Длина отрезка \(UK \) соответствует координате \(x \) центра окружности, то есть равна \(3 \) . Длину отрезка \(KQ \) можно выразить, используя определение косинуса:

\(\cos \ \delta =\dfrac{KQ}{KP}=\dfrac{KQ}{r}\Rightarrow KQ=r\cdot \cos \ \delta \) .

Тогда имеем, что для точки \(P \) координата \(x={{x}_{0}}+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \) .

По той же логике находим значение координаты y для точки \(P \) . Таким образом,

\(y={{y}_{0}}+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \) .

Итак, в общем виде координаты точек определяются по формулам:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta \end{array} \) , где

\({{x}_{0}},{{y}_{0}} \) - координаты центра окружности,

\(r \) - радиус окружности,

\(\delta \) - угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end{array} \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Загрузка...