Про наши гаджеты. Понятные инструкции для всех

Чему равны углы вписанного окружность четырехугольника. Вписанные и описанные около четырехугольника окружности

Четырехугольник является вписанным в окружность, если все его вершины лежат на этой окружности. Такая окружность является описанной около четырехугольника.

Как не каждый четырехугольник можно описать около окружности, также не каждый можно вписать в окружность.

Выпуклый четырехугольник, вписанный в окружность, обладает свойством: его противоположные углы в сумме составляют 180° . Так, если дан четырехугольник ABCD, у которого угол A противоположен углу C, а угол B противоположен углу D, то ∠A + ∠C = 180° и ∠B + ∠D = 180°.

Вообще, если одна пара противоположных углов четырехугольника в сумме составляет 180°, то и другая пара в сумме будет составлять столько же. Это следует из того, что у выпуклого четырехугольника сумма углов всегда равна 360°. В свою очередь данный факт следует из того, что у выпуклых многоугольников сумма углов определяется по формуле 180° * (n – 2), где n - количество углов (или сторон).

Доказать свойство вписанного четырехугольника можно следующим образом. Пусть в окружность O вписан четырехугольник ABCD. Требуется доказать, что ∠B + ∠D = 180°.

Угол B является вписанным в окружность. Как известно, такой угол равен половине дуги, на которую опирается. В данном случае угол B опирается на дугу ADC, значит, ∠B = ½◡ADC. (Поскольку дуга равна углу между образующими ее радиусами, то можно записать, что ∠B = ½∠AOC, внутренняя область которого содержит точку D.)

С другой стороны угол D четырехугольника опирается на дугу ABC, то есть ∠D = ½◡ABC.

Так как стороны углов B и D пересекают окружность в одних и тех же точках (A и C), то они разделяют окружность только на две дуги - ◡ADC и ◡ABC. Так как полная окружность в сумме составляет 360°, то ◡ADC + ◡ABC = 360°.

Таким образом получились следующие равенства:

∠B = ½◡ADC
∠D = ½◡ABC
◡ADC + ◡ABC = 360°

Выразим сумму углов:

∠B + ∠D = ½◡ADC + ½◡ABC

Вынесем ½ за скобку:

∠B + ∠D = ½(◡ADC + ◡ABC)

Заменим сумму дуг их числовым значением:

∠B + ∠D = ½ * 360° = 180°

Мы получили, что сумма противоположных углов вписанного четырехугольника равна 180°. Это и требовалось доказать.

То, что вписанный четырехугольник обладает таким свойством (сумма противоположных углов равна 180°), еще не означает, что любой четырехугольник, у которого сумма противоположных углов равна 180° можно вписать в окружность. Хотя на самом деле это так. Данный факт называется признаком вписанного четырехугольника и формулируется так: если сумма противоположных углов выпуклого четырехугольника равна 180°, то около него можно описать окружность (или вписать его в окружность) .

Доказать признак вписанного четырехугольника можно методом от противного. Пусть дан четырехугольник ABCD, у которого противоположные углы B и D в сумме составляют 180°. При этом угол D не лежит на окружности. Тогда возьмем на прямой, содержащей отрезок CD, такую точку E, чтобы она лежала на окружности. Получится вписанный четырехугольник ABCE. У этого четырехугольника противоположны углы B и E, а, значит, они составляют в сумме 180°. Это следует из свойства вписанного четырехугольника.

Получается, что ∠B + ∠D = 180° и ∠B + ∠E = 180°. Однако угол D четырехугольника ABCD по отношению к треугольнику AED является внешним, а значит больше угла E этого треугольника. Таким образом, мы пришли к противоречию. Значит, если сумма противоположных углов четырехугольника в сумме составляет 180°, то он всегда может быть вписан в окружность.

Примерами описанных четырёхугольников могут служить дельтоиды , которые включают ромбы , которые, в свою очередь, включают квадраты . Дельтоиды - это в точности те описанные четырёхугольники, которые также являются ортодиагональными . Если четырёхугольник является описанным и вписанным четырёхугольником , он называется бицентральным .

Свойства

В описанном четырёхугольнике четыре биссектрисы пересекаются в центре окружности. И наоборот, выпуклый четырёхугольник, в котором четыре биссектрисы пересекаются в одной точке, должен быть описанным, и точка пересечения биссектрис является центром вписанной окружности .

Если противоположные стороны в выпуклом четырёхугольнике ABCD (не являющийся трапецией) пересекаются в точках E и F , то они являются касательными к окружности тогда и только тогда, когда

B E + B F = D E + D F {\displaystyle \displaystyle BE+BF=DE+DF} A E − E C = A F − F C . {\displaystyle \displaystyle AE-EC=AF-FC.}

Второе равенство почти то же, что и равенство в теореме Уркхарта . Разница только в знаках - в теореме Уркхарта суммы, а здесь разности (см. рисунок справа).

Другое необходимое и достаточное условие - выпуклый четырёхугольник ABCD является описанным в том и только в том случае, когда вписанные в треугольники ABC и ADC окружности касаются друг друга .

Описание по углам, образованным диагональю BD со сторонами четырёхугольника ABCD , принадлежит Иосифеску (Iosifescu). Он в 1954 доказал, что выпуклый четырёхугольник имеет вписанную окружность тогда и только тогда, когда

tan ⁡ ∠ A B D 2 ⋅ tan ⁡ ∠ B D C 2 = tan ⁡ ∠ A D B 2 ⋅ tan ⁡ ∠ D B C 2 . {\displaystyle \tan {\frac {\angle ABD}{2}}\cdot \tan {\frac {\angle BDC}{2}}=\tan {\frac {\angle ADB}{2}}\cdot \tan {\frac {\angle DBC}{2}}.} R a R c = R b R d {\displaystyle R_{a}R_{c}=R_{b}R_{d}} ,

где R a , R b , R c , R d являются радиусами окружностей, внешне касательным сторонам a , b , c , d соответственно и продолжениям смежных сторон с каждой стороны .

Некоторые другие описания известны для четырёх треугольников, образованных диагоналями.

Специальные отрезки

Восемь отрезков касательных описанного четырёхугольника являются отрезками между вершинами и точками касания на сторонах. В каждой вершине имеется два равных касательных отрезка.

Точки касания образуют вписанный четырёхугольник.

Площадь

Нетригонометрические формулы

K = 1 2 p 2 q 2 − (a c − b d) 2 {\displaystyle K={\tfrac {1}{2}}{\sqrt {p^{2}q^{2}-(ac-bd)^{2}}}} ,

дающая площадь в терминах диагоналей p , q и сторон a , b , c , d касательного четырёхугольника.

Площадь можно представить также в терминах касательных отрезков (см. выше). Если их обозначить через e , f , g , h , то касательный четырёхугольник имеет площадь

K = (e + f + g + h) (e f g + f g h + g h e + h e f) . {\displaystyle K={\sqrt {(e+f+g+h)(efg+fgh+ghe+hef)}}.}

Более того, площадь касательного четырёхугольника можно выразить в терминах сторон a, b, c, d и соответствующих длин касательных отрезков e, f, g, h

K = a b c d − (e g − f h) 2 . {\displaystyle K={\sqrt {abcd-(eg-fh)^{2}}}.}

Поскольку eg = fh в том и только в том случае, когда он также является вписанным, получаем, что максимальная площадь a b c d {\displaystyle {\sqrt {abcd}}} может достигаться только на четырёхугольниках, которые являются и описанными, и вписанными одновременно.

Тригонометрические формулы

K = a b c d sin ⁡ A + C 2 = a b c d sin ⁡ B + D 2 . {\displaystyle K={\sqrt {abcd}}\sin {\frac {A+C}{2}}={\sqrt {abcd}}\sin {\frac {B+D}{2}}.}

Для заданного произведения сторон площадь будет максимальной, когда четырёхугольник является также вписанным . В этом случае K = a b c d {\displaystyle K={\sqrt {abcd}}} , поскольку противоположные углы являются дополнительными . Это можно доказать и другим способом, используя математический анализ .

Ещё одна формула площади описанного четырёхугольника ABCD , использующая два противоположных угла

K = (O A ⋅ O C + O B ⋅ O D) sin ⁡ A + C 2 {\displaystyle K=\left(OA\cdot OC+OB\cdot OD\right)\sin {\frac {A+C}{2}}} ,

где O является центром вписанной окружности.

Фактически площадь можно выразить в терминах лишь двух смежных сторон и двух противоположных углов

K = a b sin ⁡ B 2 csc ⁡ D 2 sin ⁡ B + D 2 . {\displaystyle K=ab\sin {\frac {B}{2}}\csc {\frac {D}{2}}\sin {\frac {B+D}{2}}.} K = 1 2 | (a c − b d) tan ⁡ θ | , {\displaystyle K={\tfrac {1}{2}}|(ac-bd)\tan {\theta }|,}

где θ угол (любой) между диагоналями. Формула неприменима к случаю дельтоидов, поскольку в этом случае θ равен 90° и тангенс не определён.

Неравенства

Как упомянуто было вскользь выше, площадь касательного многоугольника со сторонами a , b , c , d удовлетворяет неравенству

K ≤ a b c d {\displaystyle K\leq {\sqrt {abcd}}}

и равенство достигается тогда и только тогда, когда четырёхугольник является бицентральным .

Согласно Т. А. Ивановой (1976), полупериметр s описанного четырёхугольника удовлетворяет неравенству

s ≥ 4 r {\displaystyle s\geq 4r} ,

где r - радиус вписанной окружности. Неравенство превращается в равенство тогда и только тогда, когда четырёхугольник является квадратом . Это означает, что для площади K = rs , выполняется неравенство

K ≥ 4 r 2 {\displaystyle K\geq 4r^{2}}

с переходом в равенство в том и только в том случае, когда четырёхугольник - квадрат.

Свойства частей четырёхугольника

Четыре отрезка прямых между центром вписанной окружности и точками касания делят четырёхугольник на четыре прямоугольных дельтоида .

Если прямая делит описанный четырёхугольник на два многоугольника с равными площадями и равными периметрами , то эта линия проходит через инцентр .

Радиус вписанной окружности

Радиус вписанной окружности описанного четырёхугольника со сторонами a , b , c , d задаётся формулой

r = K s = K a + c = K b + d {\displaystyle r={\frac {K}{s}}={\frac {K}{a+c}}={\frac {K}{b+d}}} ,

где K - площадь четырёхугольника, а s - полупериметр. Для описанных четырёхугольников с заданным полупериметром радиус вписанной окружности максимален, когда четырёхугольник является одновременно и вписанным .

В терминах отрезков касательных радиус вписанной окружности .

r = e f g + f g h + g h e + h e f e + f + g + h . {\displaystyle \displaystyle r={\sqrt {\frac {efg+fgh+ghe+hef}{e+f+g+h}}}.}

Радиус вписанной окружности модно выразить также в терминах расстояния от инцентра O до вершин описанного четырёхугольника ABCD . Если u = AO , v = BO , x = CO и y = DO , то

r = 2 (σ − u v x) (σ − v x y) (σ − x y u) (σ − y u v) u v x y (u v + x y) (u x + v y) (u y + v x) {\displaystyle r=2{\sqrt {\frac {(\sigma -uvx)(\sigma -vxy)(\sigma -xyu)(\sigma -yuv)}{uvxy(uv+xy)(ux+vy)(uy+vx)}}}} ,

где σ = 1 2 (u v x + v x y + x y u + y u v) {\displaystyle \sigma ={\tfrac {1}{2}}(uvx+vxy+xyu+yuv)} .

Формулы для углов

Если e , f , g и h отрезки касательных от вершин A , B , C и D соответственно к точкам касания окружности четырёхугольником ABCD , то углы четырёхугольника можно вычислить по формулам

sin ⁡ A 2 = e f g + f g h + g h e + h e f (e + f) (e + g) (e + h) , {\displaystyle \sin {\frac {A}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(e+f)(e+g)(e+h)}}},} sin ⁡ B 2 = e f g + f g h + g h e + h e f (f + e) (f + g) (f + h) , {\displaystyle \sin {\frac {B}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(f+e)(f+g)(f+h)}}},} sin ⁡ C 2 = e f g + f g h + g h e + h e f (g + e) (g + f) (g + h) , {\displaystyle \sin {\frac {C}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(g+e)(g+f)(g+h)}}},} sin ⁡ D 2 = e f g + f g h + g h e + h e f (h + e) (h + f) (h + g) . {\displaystyle \sin {\frac {D}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(h+e)(h+f)(h+g)}}}.}

Угол между хордами KM и LN задаётся формулой (см. рисунок)

sin ⁡ φ = (e + f + g + h) (e f g + f g h + g h e + h e f) (e + f) (f + g) (g + h) (h + e) . {\displaystyle \sin {\varphi }={\sqrt {\frac {(e+f+g+h)(efg+fgh+ghe+hef)}{(e+f)(f+g)(g+h)(h+e)}}}.}

Диагонали

Если e , f , g и h являются отрезками касательных от A , B , C и D до точек касания вписанной окружности четырёхугольником ABCD , то длины диагоналей p = AC и q = BD равны

p = e + g f + h ((e + g) (f + h) + 4 f h) , {\displaystyle \displaystyle p={\sqrt {{\frac {e+g}{f+h}}{\Big (}(e+g)(f+h)+4fh{\Big)}}},} q = f + h e + g ((e + g) (f + h) + 4 e g) . {\displaystyle \displaystyle q={\sqrt {{\frac {f+h}{e+g}}{\Big (}(e+g)(f+h)+4eg{\Big)}}}.}

Хорды точек касания

Если e , f , g и h являются отрезками от вершин до точек касания, то длины хорд до противоположных точек касания равны

k = 2 (e f g + f g h + g h e + h e f) (e + f) (g + h) (e + g) (f + h) , {\displaystyle \displaystyle k={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+f)(g+h)(e+g)(f+h)}}},} l = 2 (e f g + f g h + g h e + h e f) (e + h) (f + g) (e + g) (f + h) , {\displaystyle \displaystyle l={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+h)(f+g)(e+g)(f+h)}}},}

где хорда k соединяет стороны с длинами a = e + f и c = g + h , а хорда l соединяет стороны длиной b = f + g и d = h + e . Квадрат отношения хорд удовлетворяет соотношению

k 2 l 2 = b d a c . {\displaystyle {\frac {k^{2}}{l^{2}}}={\frac {bd}{ac}}.}

Две хорды

Хорда между сторонами AB и CD в описанном четырёхугольнике ABCD длиннее, чем хорда между сторонами BC и DA тогда и только тогда, когда средняя линия между сторонами AB и CD короче, чем средняя линия между сторонами BC и DA .

Если описанный четырёхугольник ABCD имеет точки касания M на AB и N на CD и хорда MN пересекает диагональ BD в точке P , то отношение отрезков касательных B M D N {\displaystyle {\tfrac {BM}{DN}}} равно отношению B P D P {\displaystyle {\tfrac {BP}{DP}}} отрезков диагонали BD .

Коллинеарные точки

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно в описанном четырёхугольнике ABCD O , а пары противоположных сторон пересекаются в точках E и F и M 3 - середина отрезка EF , тогда точки M 3 , M 1 , O , и M 2 лежат на одной прямой Прямая, соединяющая эти точки, называется прямой Ньютона четырёхугольника.

E и F , а продолжения противоположных сторон четырёхугольника, образованного точками касания, пересекаются в точках T и S , то четыре точки E , F , T и S лежат на одной прямой

AB , BC , CD , DA в точках M , K , N и L соответственно, и если T M , T K , T N , T L являются изотомически сопряжёнными точками этих точек (то есть AТ M = BM и т.д.), то точка Нагеля определяется как пересечение прямых T N T M и T K T L . Обе эти прямые делят периметр четырёхугольника на две равные части. Однако важнее то, что точка Нагеля Q , "центроид площади" G и центр вписанной окружности O лежат на одной прямой, и при этом QG = 2GO . Эта прямая называется прямой Нагеля описанного четырёхугольника .

В описанном четырёхугольнике ABCD с центром вписанной окружности O P , пусть H M , H K , H N , H L являются ортоцентрами треугольников AOB , BOC , COD и DOA соответственно. Тогда точки P , H M , H K , H N и H L лежат на одной прямой.

Конкурентные и перпендикулярные прямые

Две диагонали четырёхугольника и две хорды, соединяющие противоположные точки касания (противоположные вершины вписанного четырёхугольника), конкурентны (т.е. пересекаются в одной точке). Для того, чтобы показать это, можно воспользоваться частным случаем теоремы Брианшона , которая утверждает, что шестиугольник, все стороны которого касаются коническое сечение , имеет три диагонали, пересекающиеся в одной точке. Из описанного четырёхугольника легко получить шестиугольник с двумя углами по 180° путём вставки двух новых вершина противоположных точках касания. Все шесть сторон полученного шестиугольника являются касательными вписанной окружности, так что его диагонали пересекаются в одной точке. Но две диагонали шестиугольника совпадают с диагоналями четырёхугольника, а третья диагональ проходит через противоположные точки касания. Повторив те же рассуждения для двух других точек касания, получим требуемый результат.

Если вписанная окружность касается сторон AB , BC , CD и DA в точках M , K , N , L соответственно, то прямые MK , LN и AC конкурентны.

Если продолжения противоположных сторон описанного четырёхугольника пересекаются в точках E и F , а диагонали пересекаются в точке P , то прямая EF перпендикулярна продолжению OP , где O - центр вписанной окружности .

Свойства вписанной окружности

Отношения двух противоположных сторон описанного четырёхугольника можно выразить через расстояния от центра вписанной окружности O до соответствующих сторон

A B C D = O A ⋅ O B O C ⋅ O D , B C D A = O B ⋅ O C O D ⋅ O A . {\displaystyle {\frac {AB}{CD}}={\frac {OA\cdot OB}{OC\cdot OD}},\quad \quad {\frac {BC}{DA}}={\frac {OB\cdot OC}{OD\cdot OA}}.}

Произведение двух смежных сторон описанного четырёхугольника ABCD с центром вписанной окружности O удовлетворяет соотношению

A B ⋅ B C = O B 2 + O A ⋅ O B ⋅ O C O D . {\displaystyle AB\cdot BC=OB^{2}+{\frac {OA\cdot OB\cdot OC}{OD}}.}

Если O - центр вписанной окружности четырёхугольника ABCD , то

O A ⋅ O C + O B ⋅ O D = A B ⋅ B C ⋅ C D ⋅ D A . {\displaystyle OA\cdot OC+OB\cdot OD={\sqrt {AB\cdot BC\cdot CD\cdot DA}}.}

Центр вписанной окружности O совпадает с "центроидом вершин" четырёхугольника в том и только в том случае, когда

O A ⋅ O C = O B ⋅ O D . {\displaystyle OA\cdot OC=OB\cdot OD.}

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно, то

O M 1 O M 2 = O A ⋅ O C O B ⋅ O D = e + g f + h , {\displaystyle {\frac {OM_{1}}{OM_{2}}}={\frac {OA\cdot OC}{OB\cdot OD}}={\frac {e+g}{f+h}},}

где e , f , g и h - отрезки касательных в вершинах A , B , C и D соответственно. Комбинируя первое равенство с последним, получим, что "центроид вершин" описанного четырёхугольника совпадает с центом вписанной окружности тогда и только тогда, когда центр вписанной окружности лежит посередине между средними точками диагоналей.

1 r 1 + 1 r 3 = 1 r 2 + 1 r 4 . {\displaystyle {\frac {1}{r_{1}}}+{\frac {1}{r_{3}}}={\frac {1}{r_{2}}}+{\frac {1}{r_{4}}}.}

Это свойство было доказано пятью годами ранее Вайнштейном . В решении его задачи похожее свойство было дано Васильевым и Сендеровым. Если через h M , h K , h N и h L обозначить высоты тех же треугольников (опущенных из пересечения диагоналей P ), то четырёхугольник является описанным тогда и только тогда, когда

1 h M + 1 h N = 1 h K + 1 h L . {\displaystyle {\frac {1}{h_{M}}}+{\frac {1}{h_{N}}}={\frac {1}{h_{K}}}+{\frac {1}{h_{L}}}.}

Ещё одно похожее свойство относится к радиусам вневписанных окружностей r M , r K , r N и r L для тех же четырёх треугольников (четыре вневписанные окружности касаются каждой из сторон четырёхугольника и продолжений диагоналей). Четырёхугольник является описанным в том и только в том случае, когда

1 r M + 1 r N = 1 r K + 1 r L . {\displaystyle {\frac {1}{r_{M}}}+{\frac {1}{r_{N}}}={\frac {1}{r_{K}}}+{\frac {1}{r_{L}}}.}

Если R M , R K , R N и R L - радиусы описанных окружностей треугольников APB , BPC , CPD и DPA соответственно, то треугольник ABCD является описанным тогда и только тогда, когда

R M + R N = R K + R L . {\displaystyle R_{M}+R_{N}=R_{K}+R_{L}.}

В 1996 Вайнштейн, похоже, был первым, кто доказал ещё одно замечательное свойство описанных четырёхугольников, которое позднее появилось в нескольких журналах и сайтах . Свойство утверждает, что если выпуклый четырёхугольников разделён на четыре неперекрывающихся треугольника его диагоналями, центры вписанных окружностей этих треугольников лежат на одной окружности тогда и только тогда, когда четырёхугольник является описанным. Фактически центры вписанных окружностей образуют ортодиагональный вписанный четырёхугоольник . Здесь вписанные окружности можно заменить на вневписанные (касающиеся стороны и продолжения диагоналей четырёхугольника). Тогда выпуклый четырёхугольник является описанным тогда и только тогда, когда центры вневписанных окружностей являются вершинами вписанного четырёхугольника .

Выпуклый четырёхугольник ABCD , в котором диагонали пересекаются в точке P , является описанным тогда и только тогда, когда четыре центра вневписанных окружностей треугольников APB , BPC , CPD и DPA лежат на одной окружности (здесь вневписанные окружности пересекают стороны четырёхугольника, в отличие от аналогичного утверждения выше, где вневписанные окружности лежат вне четырёхугольника). Если R m , R n , R k и R l - радиусы вневписанных окружностей APB , BPC , CPD и DPA соответственно, противоположных вершинам B и D , то ещё одним необходимым и достаточным условием того, что четырёхугольник является описанным, будет

1 R m + 1 R n = 1 R k + 1 R l . {\displaystyle {\frac {1}{R_{m}}}+{\frac {1}{R_{n}}}={\frac {1}{R_{k}}}+{\frac {1}{R_{l}}}.} m △ (A P B) + n △ (C P D) = k △ (B P C) + l △ (D P A) {\displaystyle {\frac {m}{\triangle (APB)}}+{\frac {n}{\triangle (CPD)}}={\frac {k}{\triangle (BPC)}}+{\frac {l}{\triangle (DPA)}}}

здесь m, k, n, l – длины сторон AB, BC, CD и DA, а ∆(APB ) - площадь треугольника APB .

Обозначим отрезки, на которые точка P делит диагональ AC как AP = p a и PC = p c . Аналогичным образом P делить диагональ BD на отрезки BP = p b и PD = p d . Тогда четырёхугольник является описанным тогда и только тогда, когда выполняется одно из равенств:

(m + p a − p b) (n + p c − p d) (m − p a + p b) (n − p c + p d) = (k + p c − p b) (l + p a − p d) (k − p c + p b) (l − p a + p d) . {\displaystyle {\frac {(m+p_{a}-p_{b})(n+p_{c}-p_{d})}{(m-p_{a}+p_{b})(n-p_{c}+p_{d})}}={\frac {(k+p_{c}-p_{b})(l+p_{a}-p_{d})}{(k-p_{c}+p_{b})(l-p_{a}+p_{d})}}.}

Условия для описанного четырёхугольника быть другим типом четырёхугольника .

Описанный четырёхугольник является бицентричным (т.е. описанным и вписанным одновременно) тогда и только тогда, когда радиус вписанной окружности наибольший среди всех описанных четырёхугольников, имеющих ту же самую последовательность длин сторон в том и только в том случае, когда любое из нижеследующих условий выполняется:

  • Площадь равна половине произведения диагоналей
  • Диагонали перпендикулярны
  • Два отрезка, соединяющие противоположные точки касания, имеют равные длины
  • Одна пара противоположных отрезков от вершины до точки касания имеют одинаковые длины
  • C.V. Durell, A. Robson. Advanced Trigonometry // Dover reprint. - 2003.
  • Victor Bryant, John Duncan. Wheels within wheels // Mathematical Gazette. - 2010. - Вып. 94, November .
  • Albrecht Hess. On a circle containing the incenters of tangential quadrilaterals // Forum Geometricorum. - 2014. - Т. 14 .
  • Wu Wei Chao, Plamen Simeonov. When quadrilaterals have inscribed circles (solution to problem 10698) // American Mathematical Monthly . - 2000. - Т. 107 , вып. 7 . - DOI :10.2307/2589133 .
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .

Larry Hoehn. A new formula concerning the diagonals and sides of a quadrilateral. - 2011. - Т. 11 Т. 10 .

  • Martin Josefsson. When is a Tangential Quadrilateral a Kite? // Forum Geometricorum. - 2011a. - Т. 11 .
  • Martin Josefsson. More Characterizations of Tangential Quadrilaterals // Forum Geometricorum. - 2011b. - Т. 11 .
  • Martin Josefsson. The Area of a Bicentric Quadrilateral // Forum Geometricorum. - 2011c. - Т. 11 .
  • Martin Josefsson. Similar Metric Characterizations of Tangential and Extangential Quadrilaterals // Forum Geometricorum. - 2012. - Т. 12 .
  • Martin Josefsson. Characterizations of Orthodiagonal Quadrilaterals. - 2012b. - Т. 12 .
  • Nicusor Minculete. Characterizations of a Tangential Quadrilateral // Forum Geometricorum. - 2009. - Т. 9 .
  • Alexei Myakishev. On Two Remarkable Lines Related to a Quadrilateral // Forum Geometricorum. - 2006. - Т. 6 .
  • A.W. Siddons, R.T. Hughes. Trigonometry. - Cambridge Univ. Press, 1929.
  • И. Вайнштейн, Н. Васильев, В. Сендеров. (Решение задачи) M1495 // Квант. - 1995. - Вып. 6 .
  • Michael De Villiers. Equiangular cyclic and equilateral circumscribed polygons // Mathematical Gazette. - 2011. - Вып. 95, March .
  • Для треугольника всегда возможны и вписанная окружность и описанная окружность.

    Для четырехугольника окружность можно вписать только в том случае, если суммы его противоположных сторон одинаковы. Из всех параллелограммов только в ромб и квадрат можно вписать окружность. Ее центр лежит на пересечении диагоналей.

    Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°. Из всех параллелограммов только около прямоугольника и квадрата можно описать окружность. Ее центр лежит на пересечении диагоналей.

    Вокруг трапеции возможно описать окружность или в трапецию можно вписать окружность если трапеция равнобокая.

    Центр описанной окружности

    Теорема. Центр описанной около треугольника окружности является точкой пересечениясерединных перпендикуляров к сторонам треугольника.

    Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

    Центр Вписанная окружность

    Определение . Вписанная в выпуклый многоугольник окружность - это окружность, которая касается всех сторон этого многоугольника (то есть каждая из сторон многоугольника является для окружностикасательной).

    Центр вписанной окружности лежит внутри многоугольника.

    Многоугольник, в который вписана окружность, называется описанным.

    В выпуклый многоугольник можно вписать окружность, если биссектрисы всех его внутренних углов пересекаются в одной точке.

    Центр вписанной в многоугольник окружности - точка пересечения его биссектрис.

    Центр вписанной окружности равноудален от сторон многоугольника. Расстояние от центра до любой стороны равно радиусу вписанной окружности По свойству касательных, проведённых из одной точки, любая вершина описанного многоугольника равноудалена от точек касания, лежащих на сторонах, выходящих из этой вершины.

    В любой треугольник можно вписать окружность. Центр вписанной в треугольник окружности называется инцентром.

    В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. В частности, в трапецию можно вписать окружность, если сумма её оснований равна сумме боковых сторон.

    В любой правильный многоугольник можно вписать окружность. Около любого правильного многоугольника можно также описать окружность. Центр вписанной и описанной окружностей лежат в центре правильного многоугольника.



    Для любого описанного многоугольника радиус вписанной окружности может быть найден по формуле

    Где S - площадь многоугольника, p - его полупериметр.

    Правильный n-угольник - формулы

    Формулы длины стороны правильного n-угольника

    1. Формула стороны правильного n-угольника через радиус вписанной окружности:

    2. Формула стороны правильного n-угольника через радиус описанной окружности:

    Формула радиуса вписанной окружности правильного n-угольника

    Формула радиуса вписанной окружности n-угольника через длину стороны:

    4. Формула радиуса описанной окружности правильного треугольника через длину стороны:

    6. Формула площади правильного треугольника через радиус вписанной окружности: S = r 2 3√3

    7. Формула площади правильного треугольника через радиус описанной окружности:

    4. Формула радиуса описанной окружности правильного четырехугольника через длину стороны:

    2. Формула стороны правильного шестиугольника через радиус описанной окружности: a = R

    3. Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

    6. Формула площади правильного шестиугольника через радиус вписанной окружности: S = r 2 2√3

    7. Формула площади правильного шестиугольника через радиус описанной окружности:

    S = R 2 3√3

    8. Угол между сторонами правильного шестиугольника: α = 120°

    Значение числа (произносится «пи» ) - математическая константа, равная отношению

    длины окружности к длине её диаметра, оно выражается бесконечной десятичной дробью.

    Обозначается буквой греческого алфавита «пи». Чему равно число пи? В простых случаях хватает знать первые 3 знака (3,14).

    53. Найдем длину дуги окружности радиуса R, отвечающей центральному углу в n°

    Центральный угол, опирающийся на дугу, длина которой равна радиусу окружности, называется углом в 1 радиан.

    Градусная мера угла в 1 радиан равна:

    Так как дуга длиной π R (полуокружность), стягивает центральный угол в 180° , то дуга длиной R, стягивает угол в π раз меньший, т.е.

    И наоборот

    Так как π = 3,14, то 1 рад = 57,3°

    Если угол содержит a радиан, то его градусная мера равна

    И наоборот

    Обычно при обозначении меры угла в радианах наименование «рад» опускают.

    Например, 360° = 2π рад, пишут 360° = 2π

    В таблице указаны наиболее часто встречающиеся углы в градусной и радианной мере.

    Определение 2

    Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

    Рисунок 1. Вписанная окружность

    Теорема 1 (об окружности, вписанной в треугольник)

    Теорема 1

    В любой треугольник можно вписать окружность и притом только одну.

    Доказательство.

    Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

    Рисунок 2. Иллюстрация теоремы 1

    Существование: Проведем окружность с центром в точке $O$ и радиусом $OK.\ $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M\ и\ L$. Так как $OM,OK\ и\ OL$ - перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

    Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O"$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

    Теорема доказана.

    Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

    Приведем еще несколько фактов, связанных с понятием вписанной окружности:

      Не во всякий четырехугольник можно вписать окружность.

      В любом описанном четырехугольнике суммы противоположных сторон равны.

      Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

    Определение 3

    Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

    Определение 4

    Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

    Рисунок 3. Описанная окружность

    Теорема 2 (об окружности, описанной около треугольника)

    Теорема 2

    Около любого треугольника можно описать окружность и притом только одну.

    Доказательство.

    Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

    Рисунок 4. Иллюстрация теоремы 2

    Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

    Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O"$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

    Теорема доказана.

    Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

    Приведем еще несколько фактов, связанных с понятием описанной окружности:

      Около четырехугольника не всегда можно описать окружность.

      В любом вписанном четырехугольнике сумма противоположных углов равна ${180}^0$.

      Если сумма противоположных углов четырехугольника равна ${180}^0$, то около него можно описать окружность.

    Пример задачи на понятия вписанной и описанной окружности

    Пример 1

    В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

    Решение.

    Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

    Рисунок 5.

    Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора ${BM}^2={BC}^2-{MC}^2,\ BM=\sqrt{{BC}^2-\frac{{AC}^2}{4}}=\sqrt{25-16}=\sqrt{9}=3$. $OM=OH=r$ -- искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4\ см$. Следовательно, $BH=5-4=1\ см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

    \[{(3-r)}^2=r^2+1\] \ \ \

    Ответ: $\frac{4}{3}$.

    Загрузка...