Про наши гаджеты. Понятные инструкции для всех

Дендриты - это что такое? Строение и функции дендридов. Дендритная кристаллизация Дендрит в материаловедении

В первой части статьи рассматриваются причины и методы устранения дефектов твердых хромовых покрытий, во-второй - способы предотвращения дефектов, их обнаружения и устранения.

На хромированной поверхности часто заметны дефекты. Правильно определить причины этих дефектов - такая задача стоит перед гальваниками и перед потребителями их продукции. Откуда и как возникают эти дефекты, то ли из-за применения неподходящего электролита, то ли плохого обращения с оборудо-ванием, то ли дефектов в самом металле, то ли каких-то других источников - все эти вопросы и рассматриваются в этой статье.

Необходимо понимать, что большинство дефектов твердых хро-мовых покрытий, таких как впадины, сетки, дендриты берут свое начало прежде всего в основном металле или на подготови-тельной поверхности предшествующей нанесению покрытия, стадии работ, и в меньшей степени эти дефекты возникают вследствие использования нестандартного электролита. Если заготовки получаются с широко распространенными дефектами, но хотя бы одна из них получилась с удовлетворительным покрытием, то маловероятно, что исполь-зуемый электролит бракованный. Как правило, причину или источ-ник дефектов следует искать в другом месте.

Однако всё ещё случается брак вследствие использования неподходящего электролита. С этого мы начнем.

Дефекты, вызванные применением нестандартных растворов.

Эти дефекты могут появиться, если подобран неправильный состав электролита или в нем скопились магнитные или другие частицы. Применение растворов с высоким отношением содержания хромовой кислоты к содержанию катализатора может приводить к образованию больших слегка окрашенных впадин диаметром до 3 мм (1/8 дюйма) "налипших корочек" или "полулуний. Эти дефекты характерны для растворов с низкой концентрацией катализатора.

Правильно сбалансированные растворы, но с высоким содер-жанием металлических включений приводят к заметно неровным и узловатым поверхностям покрытий, в большей степени, чем совершенно чистые растворы. Успешно применялись растворы с общей концентрацией железа и 3-х валентного хрома 10-15 г/л (1,5-2 унц/гал), но в покрытиях с толщиной более 0,13 мм (5 милов) при превышении концентрации Fе + ,Сr 3+ на 4 г/л(0,5унц/г)очень заметными были различия в получающейся шероховатости поверхности.

Плавающие в гальванической ванне, отлагающиеся в осадок неадгезионные и немагнитные частицы не влияют на покрытие вертикальных поверхностей. В большинстве гальванических ванн с хромом в не свежеприготовленным электролите содержится определенное количество нерастворимого хромата свинца, поступающего с анодов, а также сульфата бария из-за добавок карбоната бария. Некоторые находят выгодным фильтровать электролиты с хромом. Те, кто это делает, должно быть, получают высококачественное покрытие с толщиной слоя выше 0,18 мм (5 милов).

Однако применение вспомогательных средств может привести к загрязнению раствора и вызвать серьезные дефекты в твердых хромированных покрытиях. К категории вспомогательных средств относятся: гальваническая лента, пластиковые шарики, пласти-фикатор, лак для изоляции, проволочные (крацовочные) щётки.

Адгезионные частички от масла или от ленты стремятся всплыть на поверхность раствора и при погружении заготовки в ванну могут прилипнуть к ней. Такие частицы могут привести к нарушению процесса гальванопокрытия и к появлению точечных дефектов (питтинг).

Известно, что всплывающие пластиковые шарики, использу-емые для контроля испарения электролита собирают восковые и другие продукты расщепления и образуют липкую пленку. При погружении заготовки в ванну и при её соприкосновении с за-грязненными шариками, липкая пленка может перейти с поверхности шариков на поверхность заготовки, что может привести к дефектам покрытия. Кроме того гибкие полихлорвиниловые трубки могут выделять с поверхности жидкость, образуя при этом липкую плёнку вызывающую дефекты в местах контакта чистой заготовки с труб-ками. Постоянной причиной браков является неполное удаление лака для изоляции или воска.

Для их удаления нельзя исполь-зовать разбавители или растворители, так как остающуюся после промывки тонкую плёнку очень трудно обнаружить перед процессом гальванопокрытия. После нежелательной остановки процесса по-крытие сдирается ножом, заготовки зачищаются мелко зернистой наждачной бумагой, а затем пемзой или "меловым" порошком.

Различные магнитные (железные) частицы, например кусочки роторных проволочных щеток, вещество отделившееся от заготовки при травлении, отходы от непокрываемых внутренних поверхностей и мелкие частицы, уносимые с поверхности вращающихся контактов и подшипников; все эти частицы притягиваются к заготовке маг-нитным полем от электрического тока. Эти частицы прилипают к покрываемой поверхности, приводя к образованию узловых дефектов, несмотря на перемешивание раствора.

Меры, предотвращающие появление дефектов.

Надо делать следующее:

  • Снимать накипь, загрязнения с поверхности резервуара и содержать в чистоте надводные борта.
  • Устранять источник загрязнений.
  • Увлажнять рабочую поверхность заготовки при погружении её в раствор.
  • Тщательно очищать заготовку, полностью удалить масло, грязь,шлифовальные смеси.
  • Не полировать, не шлифовать в месте нанесения гальванопокрытия.
  • Содержать в чистоте стеллаж, лабораторные столы, резервуары для перевозки растворов, лотки и т.д.
  • Лакировать края и кромки изоляционных лент, во избежание растворения латекса, клейкого в растворе.
  • Очистку и травление заготовки производить в отдельных резервуарах (не в том, в котором проводится процесс гальвано-покрытия).
  • Тщательно очищать все внутренние поверхности и надежно уплотнять их от попадания электролита.
  • Никелировать или лудить вращающиеся станины втулки или кольца коллекторов.

Дефекты, возникшие при транспортировке.

До процесса гальванопокрытия необходимо с большой осто-рожностью переводить заготовку к месту покрытия, чтобы пре-дотвратить её соприкосновение с другими поверхностями.

Неосторожность приводит, например, к ряду впадин на по-верхности покрытий гидравлических штоков, которые были уложены кучами на тележках с металлическими колесами. Вибрация от ка-чания колёс по жесткому основанию приводила к фрикционной кор-розии на участках, расположенных вдоль линейных контактов между заготовками. Эту проблему удалось решить установкой на колёса тележки резиновых бандажей с целью снижения уровня виб-раций и применением бумажных прокладок между заготовками для того, чтобы предотвратить контакт между ними.

Сразу после отделочной обработки поверхности заготовки, эти поверхности,.полированные или нет, необходимо обернуть прадт-бумагой, чтобы защитить от каких-либо вредных воздей-ствий. Чтобы обеспечить надёжную защиту при самом напряжен-ном режиме работы, наверно, достаточно несколько слоев бумаги.

Также к появлению поверхностных дефектов может привести соприкосновение поверхности заготовки с катодной шиной.

При загрузке заготовки в резервуар в момент непредвиден-ного задевания её или контакта с катодной шиной, проска-кивает электрическая дуга, которая может привести к микропитингу (микроточечными дефектами). Контактирование поверхности заготовки с поверхностью анодов также приводит к серьезным дефектам. В любом случае заготовку, побывавшую в контакте с катодной шиной или с анодом, необходимо вытащить.из ре-зервуара (ванны) и снова соответствующим образом провести её отделочную обработку и перед повторным проведением процесса гальванопокрытия тщательно её осмотреть.

Часто дефекты могут образоваться и при небрежной перевоз-ке или загрузке заготовок. Поэтому рабочему персоналу необхо-димо очень тщательно соблюдать технологию перевозки или загрузки заготовок, а также быть очень аккуратными в своих действиях.

Дефекты в основном металле.

Если сам основной металл считать источником дефектов, то надо рассмотреть 2 вопроса: (1) механическая отделочная обра-ботка и другие способы подготовки поверхности и (2) металлур-гическая сплошность (цельность) структуры металла на самой его поверхности и вблизи.

Процессы механической отделочной обработки можно сравнить с работой плуга на пашне. Независимо от того, чем нарезается борозда одной ли точкой режущего инструмента или множеством точек шлифовальных кругов или хонинговальных брусков, каждая точка плуга образует борозду с поднятыми кромками по краям. В этих кромках обычно содержания осколки и микрозаусенцы метал-ла. Образованные таким образом острые кромки и кусочки металла становятся концентраторами высокой плотности тока, с которых и начинается осаждение хрома, что было продемонстрировано Джонсом и Кенезом в исследовательском проекте 1 4AES . В этих местах зарождаются узловые дефекты, которые доставляют много неприятностей при получении твердых хромированных покрытий. При шлифовке готового покрытия эти дефекты выкрашиваются, приводя к образованию впадин.

На фиг.1 показан вал из стали 4140, отшлифованный до чистоты 16 мкм и покрытый слоем хрома 0,5 мм (20 милов). На поверхности покрытия множество узлов и газовых включений. На фиг.2 показано в увеличенном виде газовое включение, дающее начало крупному дефекту основного металла. Хром на аноде рас-творялся. Микроскопическое исследование поверхности основного металла (Фиг.З) дало возможность обнаружить последствия ин-тенсивного шлифования. Так интенсивно проходило истирание основного металла, что происходило упрочнение поверхности и под действием растягивающих напряжений происходило образование трещин на поверхности, перпендикулярно направлению шлифовки.

Подобный вал (фиг.4) до гальванопокрытия подвергли отде-лочной механической обработке различными способами. По резуль-татам видно, что даёт каждый такой способ. Первоначально перед поступлением в лабораторию сплошной вал подвергался черновой шлифовке.

Участок окружной поверхности средней части вала не трогался совсем, а другие участки полировались (вручную абра-зивными материалами без использования суппорта (опорных элемен-тов)) на токарном станке набором наждачных бумаг; с постоянно увеличивающейся степенью зернистости: вначале со степенью зернистости 320, затем 400, затем применялась бумага с карби-дом кремния со степенью зернистости 600. Затем проводили об-работку по продольным участкам перпендикулярно направлению полирования бумагой окружных участков, по ширине эти продоль-ные участки охватывали примерно 1/4 - 1/3 окружности вала. Один участок полировался кругом с использованием смеси со сталь-ной стружкой. Другой участок продувался всухую частицами глино-зема со степенью зернистости 120. 3 участок обработке не подвергался. Полученные таким образом поверхности показаны на микроснимках на Фиг.5-10.

На фиг 5 показана шлифованная стальная поверхность до и после нанесения покрытия. Покрытие хрома крайне узловатое, с расположением узловых дефектов вдоль борозд от шлифовки.

На фиг.б показана поверхность, полированная бумагой, до и после нанесения покрытия. Линии от шлифовки, очевидные на фиг.5 (вверху), удалены, но заметны остаточные царапины и неровности. Однако хромированная поверхность получилась зна-чительно лучше, чем на фиг5 (внизу).

На фиг.7 все ещё заметны линии от шлифовки на шлифованной поверхности, продутой частицами глинозема; хромированное покрытие получилось очень узловатое (со многими сфероидальными дендритами). На фиг.8 показана поверхность, отполированная бумагой и продутая частицами глинозема. Линий от шлифовки заметно не больше, но в результате продувки на поверхности появилось очень много сфероидальных дефектов.

На фиг.9 показана шлифованная и полированная эластичным кругом поверхность. После полирования хромированная повер-хность стала удивительно гладкой. На шлифованной, полирован-ной бумагой и полированной эластичным кругом поверхности по-являются концентрированные пятна. По этим пятнам можно судить о вымывании ингибитора коррозии и наличии относительно глубоких царапин от шлифовки. Полировка наждачной бумагой конечно улучшила качество поверхности, но не была достаточно глубокой чтобы удалить все микронеровности, оставшиеся от шлифовки.

До нанесения покрытия вал анодно (с подключением к аноду) протравили в течение нескольких секунд, это сделано для того, чтобы свести к минимуму различные изменения состояния стальной поверхности. Затем поверхность вала хромировали в промышленной гальванической ванне, толщину слоя довели до 0,2 мм.

На примере видно, что отличную поверхность и покрытие мож-но получить только при полной зачистке микронеровностей, выз-ванных механической отделочной обработкой. Этого можно добиться, если снимать тонкий слой стружки заточенным, часто правленным абразивом, шлифовальным кругом, делая проходы последовательно один за другим и посредством это удаляя глубокие канавки и делая их мельче, их можно удалить последовательно полированием наждачной бумагой и (эластичным) кругом или продувкой частицами глинозема. Надо заметить, что заточенный, только что заправленный шлифовальный круг, надлежащим образом смазанный, может давать меньше неровностей поверхности, чем лощёный, притупленный или не правильно смазанный, более мелкозернистый шлифовальный круг.

Само шлифование может вызвать питтинг (точечные впаденки за счёт внедрения мелкозернистых частиц круга в поверхность металла. На фиг.11 показана такая мелкозернистая частица, отделившаяся от круга и внедрившаяся в поверхность. Для по-верхности, сильно отшлифованной лощеным, стертым кругом одной полировки недостаточно. Хотя поверхность может быть крайне гладкой, прилипший, но испытывающий растягивающее напряжение, хромированный слой позже может приподнять заусенцы и микро заусенцы, приводя к образованию сфероидальных дефектов. Поэтому до нанесения гальванопокрытия необходимо удалять эти заусенцы с поверхности основного металла. После осторожного шлифования или хонингования поверхности с удалением неровностей дальше для удаления последних микрозаусенцев можно применить несколько методов: полирование смазанной лентой, продувка паром, полирование кругомбез использования смазки, полирова-ние (эластичным кругом со стружечной смесью, суперфиниши-рование (или микрошлифовка) и электрополировка. Для получения дальнейшей информации по технологии шлифовки хорошим источ-ником является справочник по механической обработке металлов, выпущенной американским обществом металлистов, пара металла О Н 44073.

ДЕНДРИТНОЕ СТРОЕНИЕ (стали и других сплавов), строение, при котором наблюдается расположение кристаллов металла в виде елочных веточек (дендритов). Дендриты рассматриваются то как недоразвившиеся крупные кристаллы, то как друзы мелких кристалликов. Эти кристаллы ясно видимы невооруженным глазом в усадочных раковинах медленно остывших слитков чистых металлов, или на их наружных поверхностях, а в сплавах - и на их полированных и протравленных поверхностях сечения. Это различие объясняется тем, что дендриты в чистых металлах совершенно однородны и поэтому не обнаруживаются травлением; в сплавах же, вследствие особого характера их застывания, сопровождающегося сегрегацией, дендриты неоднородны, причем оси дендритов состоят из более тугоплавких составных частей, а междуосные пространства - из более легкоплавких. В стали эта неоднородность вызывается присутствующими в ней примесями, главным образом углеродом и фосфором, которые вследствие сегрегации накопляются в междуосных пространствах. Дендритное строение отчетливо наблюдается во всякой литой стали (см. эскизы), причем величина дендритов, их расположение и резкость их очертаний зависят от условий отливки и охлаждения стали и от содержания в ней примесей.

Дендритное строение мало изменяется термической обработкой - закалкой и отжигом, вследствие крайней медленности происходящих при высоких температурах диффузии примесей и выравнивания химического состава дендритов. Механическая же обработка - ковка, прокатка и штамповка - сильно деформирует металл, причем строение его переходит в неясно-дендритное или спутанно-волокнистое. К такому строению и стремятся при изготовлении ответственных стальных изделий, т. к. оно отвечает более высоким механическим качествам, чем ясно выраженное дендритное строение.

"""""""~-~-~-~"~&~"~-~-~-~"""""""

Дендриты - это расщеплённые скелетные кристаллы (в строгом смысле слова, как корректное определение термина). Но термин часто используют в более широком контексте, подразумевая под ним любые древовидные разветвленные формы роста кристаллов и агрегатов До сих пор разные авторы не всегда придерживаются достаточно четкого разделения между кристаллами скелетными и дендритными, и эти термины часто используются как идентичные. В то время как еще в 1961 г. И.И. Шафрановский обратил внимание на неопределенность термина дендрит, отделив его от понятия "скелетный кристалл". С учетом более поздних уточнений , , к кристаллическим дендритам следует относить расщепленные скелетные (иногда - антискелетные) кристаллы, именно расщепление скелетного кристалла приводит к образованию объемных древовидных ветвящихся образований. В тонких трещинах развиваются плоские "двумерные" дендриты.
Термин этот давнего происхождения, Вернер упоминал "дендритные формы" минералов еще в 1774 г. На внесении необходимой однозначности в употреблении терминов "скелет" и "дендрит" и уточнении их содержания настаивал Д.П. Григорьев.
Дендрит (от греч. дерево) представляет собой ветвящееся и расходящееся в стороны образование, возникающее при ускоренной или стесненной кристаллизации в неравновесных условиях, когда ребра или вершины скелетного кристалла расщепляются по определенным законам . В результате кристаллическая структура объекта утрачивает свою первоначальную целостность, появляются кристаллографически разупорядоченные субиндивиды. Они ветвятся и разрастаются в направлении наиболее интенсивного массопереноса (поступления питающего материала к их поверхности), кристаллографическая закономерность изначального кристалла в процессе развития из него дендрита всё более утрачивается по мере его роста. В случае зарастания промежутков между ветвями дендрита может возникнуть сложнопостроенное образование с постепенным переходом от индивида к агрегату (но не единый кристалл, что принципиально отличает "дендрит" от "скелета"). Процесс образования дендрита принято называть дендритным ростом.
Наряду с кристаллическими дендритами известны дендриты сферокристаллические, образованные ветвящимися диссимметричными сферокристаллическими сферолитами - сфероидолитами .
В качестве примера кристаллодендритов можно привести ледяные узоры на оконном стекле, живописные окислы марганца в тонких трещинах, самородную медь в зонах окосления рудных месторождений, дендриты самородных серебра и золота, решетчатые дендриты самородного висмута и ряда сульфидов. Сфероидолитовые дендриты известны для малахита, гроздевидного тодорокита, барита и др. минералов, к ним следует отнести также кораллитовые агрегаты кальцита в карстовых пещерах.
Классическая строго симметричная снежинка - наглядный пример скелетного кристалла . А дендриты льда хорошо известны в ледяных пещерах, где могут достигать больших размеров. Ветвистые дендриты льда чаще других форм встречаются среди многих видов морозных узоров на оконных стёклах. Характер кристаллизации воды на стекле во многом зависит от условий охлаждения. При охлаждении от 0 до - 6°C и небольшой исходной упругости водяного пара на поверхности оконного стекла отлагается однородный слой непрозрачного, рыхлого льда. Для начального образования тонкого слоя такого льда в качестве затравок кристаллизации известную роль могут играть дефекты структуры поверхности, царапины. Однако в ходе дальнейшего развития процесса эти влияния полностью перекрываются общей картиной осаждения льда по всей охлаждающейся поверхности.
Если охлаждение поверхности оконного стекла начинается при положительной температуре и более высокой относительной влажности и в процессе охлаждения проходится точка росы, то на охлаждающейся поверхности сначала отлагается пленка воды, которая уже при отрицательных температурах закристаллизовывается в виде дендритов. Чаще дендритная кристаллизация начинается с нижней части оконного стекла, где вследствие действия силы тяжести накапливается большее количество воды. Размеры дендритных кристаллов зависят от имеющегося для их образования материала. В нижней части окна, где пленка воды толще, дендриты обычно имеют большие размеры По мере перехода к верхней части окна размеры дендритов уменьшаются, в случае равномерной увлажненности стекла размеры дендритов примерно одинаковы. Дальнейшее охлаждение способствует расщеплению субиндивидов с переходом кристаллических дендритов в сферокристаллические, либо отложению между дендритами, а затем и на дендритах тонких слоев пушистого льда. Быстрые и значительные по величине переохлаждения дают мелкомасштабную дендритную кристаллизацию. При недостатке влаги на стекле нарушается сплошной характер кристаллизации и дендриты растут островками.
Литература:
1). Григорьев Д. П. О различии минералогических терминов: скелет, дендрит и пойкилит. - Изв. вузов, геол. и разв., 1965, № 8
2). Шафрановский И. И. Кристаллы минералов. Кривогранные, скелетные и дендритные формы. М., Госгеолтехиздат, 1961, с. 332.
3). Григорьев Д. П., Жабин А. Г. Онтогения минералов. Индивиды. М., "Наука", 1975
4). Городецкий А. Ф., Саратовкин Д. Д. Дендритные формы кристаллов, образующиеся при антискелетном росте. В сб. «Рост кристаллов» (под ред. А. В. Шубникова и Н. Н. Шефталя), 1957, стр. 190 - 198
5). Дымков Ю. М. Парагенезис минералов ураноносных жил. М. "Недра", 1985, с. 62
6). Дымков Ю. М.

Слитков и отливок. Впервые дендритные кристаллы в стальных слитках были выявлены и подробно описаны в 1870 - 1880 г. Д. К. Черновым. При дендритной кристаллизации зародыши развиваются с разными скоростями в разных кристаллографических направлениях. Например, максимальный рост кристаллита металлов и сплавов с кубической решеткой происходит в трех взаимно перпендикулярных направлениях, соответствующих октаэдрическим осям. В результате образуются ветви - оси дендрита 1-го порядка, расходящиеся от центра кристаллизации определенными углами. При дальнейшем развитии кристаллизации от осей 1-го порядка под определенным углом к ним начинают расти поперечные ветви - оси 2-го порядка, а от них - оси 3-го порядка и т. д. В металлическом расплаве формируется остов древовидной формы будущего кристаллита. Остающаяся часть расплава между дендритными ветвями кристаллизуется, постепенно наслаиваясь на ветви. Размеры дендритных ветвей зависят только от одного фактора - скорости охлаждения в интервале температур кристаллизации (Смотри ). Закристаллизовавшийся дендрит-литое , выросшее из одного зародышевого центра, с той же кристаллографической ориентировкой. Соседние ветви дендритов могут быть разориентированы на несколько градусов из-за их изгибов и смещения при кристаллизации. Дендритное строение литых зерен металлов и в особенности сплавов хорошо выявляется при травлении микрошлифов и просмотре их с помощью светового микроскопа.

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Синонимы :

Смотреть что такое "Дендрит" в других словарях:

    ДЕНДРИТ - (греч. dendrites, от dendron дерево). Камень, преимущественно известняк, с природными древовидными изображениями на нем. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ДЕНДРИТ греч. dendrites, от dendron, дерево.… … Словарь иностранных слов русского языка

    Дендрит - [δένδρον (δендрон) дерево] древовидные агр., б. ч. фигуры роста, состоящие из отдельных сросшихся друг с другом в параллельном или двойниковом положении кристаллических индивидов (иногда из скопления… … Геологическая энциклопедия

    дендрит - агрегат, кристалл, отросток Словарь русских синонимов. дендрит сущ., кол во синонимов: 4 агрегат (34) … Словарь синонимов

    дендрит - Выросший из расплава кристаллит с древовидным строением. Дендритный рост кристаллов реализуется в большинстве случаев, напр, при литье слитков и отливок. Впервые дендритные кристаллы в стальных слитках были выявлены и подробно описаны в… … Справочник технического переводчика

    ДЕНДРИТ - ветвящийся отросток нервной клетки (нейрона), воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Проводит нервные импульсы к телу нейрона. Ср. Аксон … Большой Энциклопедический словарь

    ДЕНДРИТ - ДЕНДРИТ, короткий разветвленный отросток нервной клетки (НЕЙРОНА). Он переносит импульсы внутрь клетки и передает импульсы другим нервным клеткам через короткие каналы, называемые СИНАПСАМИ. У одного нейрона может быть несколько дендритов … Научно-технический энциклопедический словарь

    ДЕНДРИТ - [дэ], дендрита, муж. (от греч. dendron дерево). 1. Разветвляющийся отросток нервной клетки (анат.). 2. Кристаллическое образование древовидной формы (минер.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    ДЕНДРИТ - муж., греч. природное суковатое изображенье на камне, похожее на деревцо. Агат с деревцом, Дендритовый, дендритный, деревцовый; с дендритами, к ним относящийся. Дендролит муж. окаменелое дерево, адамова кость. Дендрология жен. часть ботаники и… … Толковый словарь Даля

    ДЕНДРИТ - (от греч. dendron дерево), короткий ветвящийся цитоплазматич. отросток нейрона (дл. до 700 мкм), проводящий нервные импульсы к телу нейрона (перикариону). От тела большинства нейронов отходит неск. Д., ветви к рых локализуются около него. Д. не… … Биологический энциклопедический словарь

    дендрит - а, м. dendrite f. <гр. dendron дерево. 1. Полудрагоценный камень, чаще разновидность халцедона, сердолик, сардер, агат или янтарь, структура которых создает внутри узор, подобный изображению деревца с ветвями. Отшлифованные дендриты благодаря… … Исторический словарь галлицизмов русского языка

    дендрит - dendrite Dendrit мінеральний аґреґат (іноді кристал) деревоподібної форми. Утворюється з розчинів, пари або розплавів при швидкій кристалізації речовини в тріщинах, в’язкому середовищі тощо … Гірничий енциклопедичний словник

В чистых металлах и эвтектических сплавах, а также в сплавах, имеющих состав, соответствующий химическому соединению, при медленном охлаждении кристаллизация происходит при определенной постоянной температуре. Остальные сплавы, как было показано выше, кристаллизуются в некотором интервале температур, определяемом диаграммой состояния (рис. 2.2).

Рисунок 2.3 - Формы роста кристаллов: а - ступенчатая, б - ячеистая, в - дендритная форма роста кристаллов

Основной единицей структуры первичной кристаллизации металла является зерно, характеризуемое единой системой ориентации атомов кристаллической решетки и определенными границами, отделяющими его от соседних зерен.

Форма растущих в расплаве кристаллов зависит от переохлаждения жидкости, направления теплоотвода, содержания примесей в стали и других параметров.

При малых скоростях охлаждения поверхность границы затвердевания получается гладкой с небольшими ступенями при средних развивается ячеистая структура и при больших - дендритная (рис. 2.3). На условия перехода от одной структуры к другой влияют температурный градиент в расплаве и твердой фазе. Чем больше скорость кристаллизации и меньше температурный градиент в расплаве, тем больше вероятность образования дендритной структуры.

В стальных слитках образуется дендритная и ячеистая структура.

Дендритное строение кристаллов в слитке было обнаружено еще Д.К. Черновым в 1868 г. В сравнении с плоским фронтом затвердевания дендритная кристаллизация представляет собой чрезвычайно сложный процесс, связанный с геометрической формой дендритов, диффузией примесей, возможностью движения жидкой фазы в междендритном пространстве, образованием новых неметаллических фаз (неметаллических включений) и ряда других явлений. Дендритная структура влияет на размер зерна и механические свойства литой и деформированной стали. На рис.2.4 приведены фотографии дендритов в крупном стальном слитке, выявленные после глубокого травления металла. Видно, что в строении дендрита выделяется главная ось первого порядка и перекрещивающиеся с ней оси второго, а иногда и третьего порядка.

Рисунок 2.4

Рост дендрита, образующегося на холодной поверхности и выступающего в расплав характеризуется различной скоростью роста отдельных плоскостей кристаллов. Быстро растущие поверхности образуют шип, выступающий в оставшийся расплав. Выделяющаяся в переохлажденный расплав теплота кристаллизации растущего кристалла ухудшает условия роста других близлежащих кристаллов.

Первоначально дендриты очень малы, даже если затвердевание идет сравнительно медленно. Затем, когда процесс затвердевания замедляется, рост продолжают лишь отдельные ветви, оси которых совпадают с направлением теплового потока (рис.2.5). Другие ветви при этом частично растворяются таким образом, что протяженность дендритов значительно увеличивается по мере затвердевания. Окончательная длина дендритов определяется процессом их укрупнения и может составлять величину от нескольких миллиметров до десятков сантиметров.

Рисунок 2.5

Современные теории опираются на дислокационный рост кристаллов. На поверхности кристалла в месте пересечения винтовой дислокации возникает ступенька, на которой, в сравнении с заполненной плоскостью, имеются более благоприятные условия для образования двухмерного зародыша, что подтверждается наличием на поверхности кристалла спирали роста. Закругление дислокационной линии вызывается постоянной скоростью роста в месте дислокационной линии и снижением скорости роста по мере удаления от нее.

По мере увеличения скорости охлаждения формы различных кристаллов постоянно усложняются. Для малых скоростей охлаждения характерны глобулярные или округлые формы. С увеличением скорости охлаждения формы кристаллов становятся неправильными, а процесс их роста неустойчивым. При дальнейшем ускорении охлаждения возникают и становятся все более четкими дендритные формы, а оси дендритов становятся все более тонкими и расстояния между ними уменьшаются. Наконец, при самых больших скоростях охлаждения оси второго и третьего порядка перестают образовываться и возникают игольчатые формы. Наблюдения за скоростью роста дендритов показывают, что оси их растут с преобладающей продольной скоростью. Причем скорость роста осей первого порядка больше, чем второго, а второго - больше чем третьего.

Общая схема областей и зон в затвердевающем слитке приведена на рис.2.6. Эта схема предполагает последовательную кристаллизацию металла в условиях направленного теплоотвода.

Рисунок 2.6

В первый момент при заливке стали, когда жидкий металл непосредственно контактирует с холодной стенкой изложницы, тонкий слой металла, соприкасающийся со стенкой изложницы, быстро переохлаждается до температуры ниже точки ликвидуса. Это приводит к возникновению и быстрому росту большого числа зародышей кристаллов, которые образуются на различных твердых частицах, в достаточном количестве имеющихся в жидкой стали и служащих атализаторами зарождения. Ширина корковой зоны определяется протяженностью области термического переохлаждения и может составлять величину порядка 5-10 мм.

Возникшее вначале термическое переохлаждение снижается с ростом кристаллов корковой зоны. Когда переохлаждение становится меньше того, при котором действие катализаторов уже не проявляется, возможен рост только существующих кристаллов. В этом случае наиболее благоприятные условия роста создаются лишь для отдельных кристаллов, у которых главные направления роста совпадают с направлением теплоотвода, что приводит к возникновению столбчатой зоны, формирующейся в условиях последовательной кристаллизации.

При этом фронт затвердевания представляет собой двухфазную твердо-жидкую область (выступающие дендриты с заключенной между их осями жидкостью), а ширина двухфазной зоны определяется интервалом температур кристаллизации (распределение в ней твердой фазы зависит от темпа кристаллизации сплава). Если гетерогенное зародышеобразование происходит слабо, а обламывание дендритов минимальное, что имеет место при слабой конвекции и высоком температурном градиенте, то получается направленный рост столбчатых дендритов.

Рост кристаллов столбчатой зоны сопровождается также снятием термического переохлаждения выделяющейся теплотой кристаллизации и повышением концентрации легкоплавких растворимых примесей перед фронтом кристаллизации, что приводит к возникновению концентрационного переохлаждения. Последнее обеспечивает дальнейший рост столбчатых кристаллов, вытянутая форма которых свидетельствует об отсутствии на этом этапе условий для образования новых центров зародышеобразования. По мере развития процесса температурный градиент у фронта кристаллизации уменьшается, а степень концентрационного переохлаждения увеличивается. В результате создаются благоприятные условия для гетерогенного зарождения новых зародышей в объеме расплава с последующим ростом “жизнеспособных” кристаллов (имеющих размер, несколько больший критического) за счет отдачи скрытой теплоты кристаллизации переохлажденному расплаву. С этого момента перед фронтом кристаллизации начинается объемная кристаллизация, образующая вторую двухфазную жидко-твердую область (кристаллы, взвешенные в расплаве).

Кроме того, на этом этапе может наблюдаться механическое обламывание ветвей дендритов, обусловленное движением конвективных потоков жидкой стали и подплавлением некоторых ветвей дендритного каркаса. При этом отделившиеся частицы дендритов образуют жидко-твердую область и служат самостоятельными зародышами кристаллизации.

Таким образом, затвердевание слитка является сложным комплексом физико-химических и теплофизических процессов, изучение которых – необходимая предпосылка для разработки оптимальных технологических режимов производства слитков, обеспечивающих высокий выход годного металла и качество, удовлетворяющее требованиям современным стандартов.

Загрузка...