Про наши гаджеты. Понятные инструкции для всех

Типы кристаллических решеток различных веществ. Строение веществ

Строение вещества.

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества.
Наша задача познакомиться со строением вещества.


При низких температурах для веществ устойчиво твёрдое состояние.

☼ Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

☼ Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.
У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Жидкие кристаллы.

Жидкие кристаллы открыты в конце XIX века, но изучены в последние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водяной лёд плавится при температуре выше 2000 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т.е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

Типы кристаллических решёток.

Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.
При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку.

Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве.

В самой кристаллической решетке различают узлы и межузловое пространство.
Одно и то же вещество в зависимости от условий (p, t,…) существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.
Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

☼ Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

☼ Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

☼ Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

☼ Название графита происходит от итальянского «граффитто» - пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЁТОК







Свойства веществ с различной кристаллической решёткой (таблица)

Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное).

Взаимосвязь между положением элемента в Периодической системе и кристаллической решёткой его простого вещества.

Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.



Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

ЗАКРЕПЛЕНИЕ

Изучите материал лекции, ответьте на следующие вопросы письменно в тетради:
- Что такое кристаллическая решётка?
- Какие виды кристаллических решёток существуют?
- Охарактеризуйте каждый вид кристаллической решётки по плану:

Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры

Выполните задания по данной теме:


- Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (CH3 COOH), сахар (C12 H22 O11 ), калийное удобрение (KCl), речной песок (SiO2 ) – температура плавления 1710 0C, аммиак (NH3 ), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?
По формулам приведённых веществ: SiC, CS2 , NaBr, C2 H2 - определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ.
Тренажёр №1. "Кристаллические решётки"
Тренажёр №2. "Тестовые задания"
Тест (самоконтроль):

1) Вещества, имеющие молекулярную кристаллическую решётку, как правило:
a). тугоплавки и хорошо растворимы в воде
б). легкоплавки и летучи
в). Тверды и электропроводны
г). Теплопроводны и пластичны

2) Понятия «молекула» не применимо по отношению к структурной единице вещества:

б). кислород

в). алмаз

3) Атомная кристаллическая решётка характерна для:

a). алюминия и графита

б). серы и йода

в). оксида кремния и хлорида натрия

г). алмаза и бора

4) Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решётка:

А). молекулярная

б). атомная

в). ионная

г). металлическая



Согласно атомно-молекулярной теории Бойля, все вещества состоят из молекул, которые находятся в постоянном движении. Но существует ли какая-то определённая структура в веществах? Или они просто состоят из хаотично движущихся молекул?

В действительности чёткую структуру имеют все вещества, пребывающие в твёрдом состоянии. Атомы и молекулы движутся, но силы притяжения и отталкивания между частицами сбалансированы, поэтому атомы и молекулы располагаются в определённой точке пространства (но продолжают совершать небольшие колебания, зависящие от температуры). Такие структуры называются кристаллическими решётками . Места, в которых находятся сами молекулы, ионы или атомы, называют узлами . А расстояния между узлами получили название – периоды идентичности . В зависимости от положения частиц в пространстве, различают несколько типов:

  1. атомная;
  2. ионная;
  3. молекулярная;
  4. металлическая.

В жидком и газообразном состоянии вещества не имеют чёткой решётки, их молекулы движутся хаотично, именно поэтому они не имеют формы. Например, кислород, находясь в газообразном состоянии, представляет собой бесцветный газ без запаха, в жидком (при -194 градусов) – раствор голубоватого цвета. Когда температура опускается до -219 градусов, кислород переходит в твёрдое состояние и приобретает кр. решётку, при этом он превращается в снегообразную массу синего цвета.

Интересно, что у аморфных веществ нет чёткой структуры, поэтому у них и нет строгой температуры плавления и кипения. Смола и пластилин при нагревании постепенно размягчаются и становятся жидкими, у них нет чёткой фазы перехода.

Атомная кристаллическая решётка

В узлах находятся атомы, о чём и говорит название. Эти вещества очень крепкие и прочные , так как между частицами образуется ковалентная связь. Соседние атомы образуют между собой общую пару электронов (а, точнее, их электронные облака наслаиваются друг на друга), и поэтому они очень хорошо связаны друг с другом. Самый наглядные пример – алмаз, который по шкале Мооса обладит наибольшей твёрдостью. Интересно, что алмаз, как и графит, состоит из углевода. Графит является очень хрупким веществом (твёрдость по шкале Мооса – 1), что является наглядным примером того, как много зависит от вида.

Атомная кр. решётка плохо распространена в природе, к ней относятся: кварц, бор, песок, кремний, оксид кремния (IV), германий, горный хрусталь. Для этих веществ характерна высокая температура плавления, прочность, а также эти соединения очень твёрдые и нерастворимые в воде. Из-за очень сильной связи между атомами, эти химические соединения почти не взаимодействуют с другими и очень плохо проводят ток.

Ионная кристаллическая решётка

В этом типе ионы располагаются в каждом узле. Соответственно, этот вид характерен для веществ с ионной связью, например: хлорид калия, сульфат кальция, хлорид меди, фосфат серебра, гидроксид меди и так далее. К веществам с такой схемой соединения частиц относятся ;

  • соли;
  • гидроксиды металлов;
  • оксиды металлов.

Хлорид натрия имеет чередование положительных (Na +) и отрицательных (Cl —) ионов. Один ион хлора, находящийся в узле, притягивает к себе два иона натрия (благодаря электромагнитному полю), которые находятся в соседних узлах. Таким образом, образуется куб, в котором частицы связаны между собой.

Для ионной решётки характерна прочность, тугоплавкость, устойчивость, твёрдость и нелетучесть. Некоторые вещества могут проводить электрический ток.

Молекулярная кристаллическая решётка

В узлах этой структуры находятся молекулы, которые плотно упакованы между собой. Для таких веществ характерна ковалентная полярная и неполярная связь. Интересно, что независимо от ковалентной связи, между частицами образуете очень слабое притяжение (из-за слабых ван-дер-вальсовых сил). Именно поэтому такие вещества очень хрупкие, обладают низкой температурой кипения и плавления, а также они летучие. К таким веществам относятся: вода, органические вещества (сахар, нафталин), оксид углерода (IV), сероводород, благородные газы, двух– (водород, кислород, хлор, азот, йод), трёх- (озон), четырёх- (фосфор), восьмиатомные (сера) вещества и так далее.

Одна из отличительных черт это то, что структурная и пространственная модель сохраняется во всех фазах (как в твёрдых, так в жидких и газообразных).

Металлическая кристаллическая решётка

Из-за наличия в узлах ионов, может показаться, что металлическая решетка похожа на ионную. На самом деле, это две совершенно разные модели, с разными свойствами.

Металлическая гораздо гибче и пластичнее ионной, для неё характерна прочность, высокая электро- и теплопроводность, эти вещества хорошо плавятся и отлично проводят электрический ток. Это объясняется тем, что в узлах находятся положительно заряженные ионы металлов (катионы), которые могут перемещаться по всей структуре, тем самым обеспечивают течение электронов. Частицы хаотично движутся около своего узла (они не имеют достаточной энергии, чтобы выйти за пределы), но как только появляется электрическое поле, электроны образуют поток и устремляются из положительной в отрицательную область.

Металлическая кристаллическая решётка характерна для металлов, например: свинец, натрий, калий, кальций, серебро, железо, цинк, платина и так далее. Помимо прочего, она подразделяется ещё на несколько типов упаковок: гексагональная, объёмно центрированная (наименее плотная) и гранецентрированная. Первая упаковка характерна для цинка, кобальта, магния, вторая для бария, железа, натрия, третья для меди, алюминия и кальция.

Таким образом, от типа решётки зависят многие свойства, а также строение вещества. Зная тип, можно предсказать, к примеру, какой будет тугоплавкость или прочность объекта.

Для большинства веществ характерна способность в зависимости от условий находиться в одном из трех агрегатных состояний: твердом, жидком или газообразном.

Например, вода при нормальном давлении в интервале температур 0-100 o C является жидкостью, при температуре выше 100 о С способна существовать только в газообразном состоянии, а при температуре менее 0 о С представляет собой твердое вещество.
Вещества в твердом состоянии различают аморфные и кристаллические.

Характерными признаками аморфных веществ является отсутствие четкой температуры плавления: их текучесть плавно увеличивается с ростом температуры. К аморфным веществам относятся такие соединения, как воск, парафин, большинство пластмасс, стекло и т.д.

Все же кристаллические вещества обладают конкретной температурой плавления, т.е. вещество с кристаллическим строением переходит из твердого состоянии в жидкое не постепенно, а резко, при достижении конкретной температуры. В качестве примера кристаллических веществ можно привести поваренную соль, сахар, лед.

Разница в физических свойствах аморфных и кристаллических твердых веществ обусловлена прежде всего особенностями строения таких веществ. В чем заключается разница между веществом в аморфном и кристаллическом состоянии, проще всего понять из следующей иллюстрации:

Как можно заметить, в аморфном веществе, в отличие от кристаллического, отсутствует какой-либо порядок в расположении частиц. Если же в кристаллическом веществе мысленно соединить прямой два близкорасположенных друг к другу атома, то можно обнаружить, что на этой линии на строго определенных промежутках будут лежать одни и те же частицы:

Таким образом, в случае кристаллических веществах можно говорить о таком понятии, как кристаллическая решетка.

Кристаллической решеткой называют пространственный каркас, соединяющий точки пространства, в которых находятся частицы, образующие кристалл.

Точки пространства, в которых находятся образующие кристалл частицы, называют узлами кристаллической решетки .

В зависимости от того, какие частицы находятся в узлах кристаллической решетки, различают: молекулярную, атомную, ионную и металлическую кристаллические решетки .

В узлах молекулярной кристаллической решетки
Кристаллическая решетка льда как пример молекулярной решетки

находятся молекулы, внутри которых атомы связаны прочными ковалентными связями, однако сами молекулы удерживаются друг возле друга слабыми межмолекулярными силами. Вследствие таких слабых межмолекулярных взаимодействий кристаллы с молекулярной решеткой являются непрочными. Такие вещества от веществ с иными типами строения отличаются существенно более низкими температурами плавления и кипения, не проводят электрический ток, могут как растворяться, так и не растворяться в различных растворителях. Растворы таких соединений могут как проводить, так и не проводить электрический ток в зависимости от класса соединения. К соединениям с молекулярной кристаллической решеткой относятся многие простые вещества — неметаллы (отвержденные H 2 , O 2 , Cl 2 , ромбическая сера S 8 , белый фосфор P 4), а также многие сложные вещества – водородные соединения неметаллов, кислоты, оксиды неметаллов, большинство органических веществ. Следует отметить, что, если вещество находится в газообразном или жидком состоянии, говорить о молекулярной кристаллической решетке неуместно: корректнее использовать термин — молекулярный тип строения.

Кристаллическая решетка алмаза как пример атомной решетки
В узлах атомной кристаллической решетки

находятся атомы. При этом все узлы такой кристаллической решетки «сшиты» между собой посредством прочных ковалентных связей в единый кристалл. Фактически, такой кристалл является одной гигантской молекулой. Вследствие особенностей строения все вещества с атомной кристаллической решеткой являются твердыми, обладают высокими температурами плавления, химически мало активны, не растворимы ни в воде, ни в органических растворителях, а их расплавы не проводят электрический ток. Следует запомнить, что к веществам с атомным типом строения из простых веществ относятся бор B, углерод C (алмаз и графит), кремний Si, из сложных веществ — диоксид кремния SiO 2 (кварц), карбид кремния SiC, нитрид бора BN.

У веществ с ионной кристаллической решеткой

в узлах решетки находятся ионы, связанные друг с другом посредством ионных связей.
Поскольку ионные связи достаточно прочны, вещества с ионной решеткой обладают сравнительно высокой твердостью и тугоплавкостью. Чаще всего они растворимы в воде, а их растворы, как и расплавы проводят электрический ток.
К веществам с ионным типом кристаллической решетки относятся соли металлов и аммония (NH 4 +), основания, оксиды металлов. Верным признаком ионного строения вещества является наличие в его составе одновременно атомов типичного металла и неметалла.

Кристаллическая решетка хлорида натрия как пример ионной решетки

наблюдается в кристаллах свободных металлов, например, натрия Na, железа Fe, магния Mg и т.д. В случае металлической кристаллической решетки, в ее узлах находятся катионы и атомы металлов, между которыми движутся электроны. При этом движущиеся электроны периодически присоединяются к катионам, таким образом нейтрализуя их заряд, а отдельные нейтральные атомы металлов взамен «отпускают» часть своих электронов, превращаясь, в свою очередь, в катионы. Фактически, «свободные» электроны принадлежат не отдельным атомам, а всему кристаллу.

Такие особенности строения приводят к тому, что металлы хорошо проводят тепло и электрический ток, часто обладают высокой пластичностью (ковкостью).
Разброс значений температур плавления металлов очень велик. Так, например, температура плавления ртути составляет примерно минус 39 о С (жидкая в обычных условиях), а вольфрама — 3422 °C. Следует отметить, что в обычных условиях все металлы, кроме ртути, являются твердыми веществами.

Любое вещество в природе, как известно, состоит из более мелких частиц. Они, в свою очередь, связаны и образуют определенную структуру, которая определяет свойства конкретного вещества.

Атомная свойственна и возникает при низких температурах и высоком давлении. Собственно, именно благодаря такому , металлы и ряд других материалов приобретают характерную прочность.

Строение таких веществ на молекулярном уровне выглядит, как кристаллическая решетка, каждый атом в которой связан со своим соседом самым прочным соединением, существующим в природе - ковалентной связью. Все мельчайшие элементы, образующие структуры, расположены упорядоченно и с определенной периодичностью. Представляя собой сетку, в углах которой расположены атомы, окруженные всегда одинаковым числом спутников, атомная кристаллическая решетка практически не меняет своего строения. Общеизвестно, что изменить структуру чистого металла или сплава можно лишь нагревая его. При этом температура тем выше, чем более прочные связи в решетке.

Иными словами, атомная кристаллическая решетка является залогом прочности и твердости материалов. При этом, однако, стоит учитывать, что расположение атомов в различных веществах также может отличаться, что, в свою очередь, влияет на степень прочности. Так, например, алмаз и графит, имеющие в составе один и тот же атом углерода, в высшей мере отличаются друг от друга по показателям прочности: алмаз - на Земле, графит же может слоиться и ломаться. Дело в том, что в кристаллической решетке графита атомы расположены слоями. Каждый слой напоминает пчелиную соту, в которой атомы углерода сочленены достаточно слабо. Подобное строение обуславливает слоистое крошение грифелей карандаша: при поломке части графита попросту отслаиваются. Другое дело - алмаз, кристаллическая решетка которого состоит из возбужденных атомов углерода, то есть тех, что способны образовывать 4 прочных связи. Разрушить такое сочленение попросту невозможно.

Кристаллические решетки металлов, кроме того, обладают определенными характеристиками:

1. Период решетки - величина, определяющая расстояние между центрами двух рядом расположенных атомов, измеряемая по ребру решетки. Общепринятое обозначение не отличается от оного в математике: a, b, c - длина, ширина, высота решетки соответственно. Очевидно, что размеры фигуры столь малы, что расстояние измеряется в наименьших единицах измерения - десятой доли нанометра или ангстремах .

2. К - координационное число . Показатель, определяющий плотность упаковки атомов в рамках одной решетки. Соответственно, плотность ее тем больше, чем выше число К. По факту же данная цифра являет собой количество атомов, находящихся как можно ближе и на равном расстоянии от изучаемого атома.

3. Базис решетки . Также величина, характеризующая плотность решетки. Представляет собой общее число атомов, которые принадлежат конкретной изучаемой ячейке.

4. Коэффициент компактности измеряется путем подсчета общего объема решетки, поделенного на тот объем, что занимают все атомы в ней. Как и предыдущие две, эта величина отражает плотность изучаемой решетки.

Мы рассмотрели всего несколько веществ, которым свойственна атомная кристаллическая решетка. Меж тем, их великое множество. Несмотря на большое разнообразие, кристаллическая атомная решетка включает в себя единицы, всегда соединенные при помощи (полярной или неполярной). Кроме того, подобные вещества практически не растворяются в воде и характеризуются низкой теплопроводностью.

В природе существует три вида кристаллических решеток: кубическая объемно-центрированная, кубическая гранецентрированная, плотноупакованная гексагональная.
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Комбинированный.

Основная цель урока: Дать учащимся конкретные представления об аморфных и кристаллических веществах, типах кристаллических решеток, установить взаимосвязь между строением и свойствами веществ.

Задачи урока.

Образовательная: сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества, дать учащимся представление о законе постоянства состава.

Воспитательная: продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого- структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.

Развивающая: развивать познавательный интерес школьников, используя проблемные ситуации; совершенствовать умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Оборудование: Периодическая система Д.И.Менделеева, коллекция “Металлы”, неметаллы: сера, графит, красный фосфор, кислород; Презентация “Кристаллические решетки”, модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, смолы, воск, жевательная резинка, шоколад, компьютер, мультимедийная установка, видеопыт “Возгонка бензойной кислоты”.

Ход урока

1. Организационный момент.

Учитель приветствует учеников, фиксирует отсутствующих.

Затем сообщает тему урока и цель урока. Учащиеся записывают тему урока в тетрадь. (Cлайд 1, 2).

2. Проверка домашнего задания

(2 ученика у доски: Определить вид химической связи для веществ с формулами:

1) NaCl, CO 2 , I 2 ; 2) Na, NaOH, H 2 S (записывают ответ на доске и включаются в опрос).

3. Анализ ситуации.

Учитель: Что изучает химия? Ответ: Химия - это наука о веществах, их свойствах и превращениях веществ.

Учитель: Что же такое вещество? Ответ: Вещество - это то, из чего состоит физическое тело. (Cлайд 3).

Учитель: Какие агрегатные состояния веществ вы знаете?

Ответ: Существует три агрегатных состояния: твердое, жидкое и газообразное. (Cлайд 4).

Учитель: Приведите примеры веществ, которые при различных температурах могут существовать во всех трех агрегатных состояниях.

Ответ: Вода. При обычных условиях вода находится в жидком состоянии, при понижении температуры ниже 0 0 С вода переходит в твердое состояние - лед, а при повышении температуры до 100 0 С мы получим водяной пар (газообразное состояние).

Учитель (дополнение): Любое вещество можно получить в твердом, жидком и газообразном виде. Кроме воды – это металлы, которые при нормальных условиях находятся в твердом состоянии, при нагревании начинают размягчаться, и при определенной температуре(t пл) переходят в жидкое состояние - плавятся. При дальнейшем нагревании, до температуры кипения, металлы начинают испаряться, т.е. переходить в газообразное состояние. Любой газ можно перевести в жидкое и твердое состояние, понижая температуру: например, кислород, который при температуре (-194 0 С) превращается в жидкость голубого цвета, а при температуре (-218,8 0 С) затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. Сегодня на уроке мы будем рассматривать твердое состояние вещества.

Учитель: Назовите, какие твердые вещества находятся у вас на столах.

Ответ: Металлы, пластилин, поваренная соль: NaCl, графит.

Учитель: Как вы думаете? Какое из этих веществ лишнее?

Ответ: Пластилин.

Учитель: Почему?

Делаются предположения. Если ученики затрудняются, то с помощью учителя приходят к выводу, что пластилин в отличие от металлов и хлорида натрия не имеет определенной температуры плавления - он (пластилин) постепенно размягчается и переходит в текучее состояние. Таков, например, шоколад, который тает во рту, или жевательная резинка, а также стекло, пластмассы, смолы, воск (при объяснении учитель демонстрирует классу образцы этих веществ). Такие вещества называют аморфными. (слайд 5), а металлы и хлорид натрия - кристаллические. (Cлайд 6).

Таким образом, различают два вида твердых веществ: аморфные и кристаллические. (слайд7).

1) У аморфных веществ нет определенной температуры плавления и расположение частиц в них строго не упорядочено.

Кристаллические вещества имеют строго определенную температуру плавления и, главное, характеризуются правильным расположением частиц, из которых они построены: атомов, молекул и ионов. Эти частицы расположены в строго определенных точках пространства, и, если эти узлы соединить прямыми линиями, то образуется пространственный каркас - кристаллическая решетка .

Учитель задает проблемные вопросы

Как объяснить существование твердых веществ со столь различными свойствами?

2) Почему кристаллические вещества при ударе раскалываются в определенных плоскостях, а аморфные вещества этим свойством не обладают?

Выслушать ответы учеников и подвести их к выводу :

Свойства веществ в твердом состоянии зависят от типа кристаллической решетки (прежде всего от того, какие частицы находятся в ее узлах), что, в свою очередь, обусловлено типом химической связи в данном веществе.

Проверка домашнего задания:

1) NaCl – ионная связь,

СО 2 – ковалентная полярная связь

I 2 – ковалентная неполярная связь

2) Na – металлическая связь

NаОН - ионная связь между Na + иОН - (О и Н ковалентная)

Н 2 S - ковалентная полярная

Фронтальный опрос.

  • Какая связь называется ионной?
  • Какая связь называется ковалентной?
  • Какая связь называется ковалентной полярной? неполярной?
  • Что называется электроотрицательностью?

Вывод: Прослеживается логическая последовательность, взаимосвязь явлений в природе: Строение атома->ЭО->Виды химической связи->Тип кристаллической решетки->Свойства веществ. (слайд 10).

Учитель: В зависимости от вида частиц и от характера связи между ними различают четыре типа кристаллических решеток : ионные, молекулярные, атомные и металлические. (Cлайд 11).

Результаты оформляются в следующую таблицу-образец таблицы у учеников на парте. (см. Приложение 1). (Cлайд 12).

Ионные кристаллические решетки

Учитель: Как вы думаете? Для веществ с каким видом химической связи будет характерен такой вид решетки?

Ответ: Для веществ с ионной химической связью будет характерна ионная решетка.

Учитель: Какие частицы будут находиться в узлах решетки?

Ответ: Ионы.

Учитель: Какие частицы называются ионами?

Ответ: Ионы-это частицы, имеющие положительный или отрицательный заряд.

Учитель: Какие ионы бывают по составу?

Ответ: Простые и сложные.

Демонстрация - модель кристаллической решетки хлорида натрия (NaCl).

Объяснение учителя: В узлах кристаллической решетки хлорида натрия находятся ионы натрия и хлора.

В кристаллах NaCl отдельных молекул хлорида натрия не существует. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl - , Na n Cl n , где n – большое число.

Связи между ионами в таком кристалле очень прочные. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки, нелетучи, хрупки. Расплавы их проводят электрический ток (Почему?), легко растворяются в воде.

Ионные соединения - это бинарные соединения металлов (I А и II A), соли, щелочи.

Атомные кристаллические решетки

Демонстрация кристаллических решеток алмаза и графита.

У учеников на столе образцы графита.

Учитель: Какие частицы будут находиться в узлах атомной кристаллической решетки?

Ответ: В узлах атомной кристаллической решетки находятся отдельные атомы.

Учитель: Какая химическая связь между атомами будет возникать?

Ответ: Ковалентная химическая связь.

Объяснения учителя.

Действительно, в узлах атомных кристаллических решеток находятся отдельные атомы, связанные между собой ковалентными связями. Так как атомы, подобно ионам, могут по-разному располагаться в пространстве, то образуются кристаллы разной формы.

Атомная кристаллическая решетка алмаза

В данных решетках молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Примером веществ с таким типом кристаллических решеток могут служить аллотропные модификации углерода: алмаз, графит; а также бор, кремний, красный фосфор, германий. Вопрос: Какие эти вещества по составу? Ответ: Простые по составу.

Атомные кристаллические решетки имеют не только простые, но и сложные. Например, оксид алюминия, оксид кремния. Все эти вещества имеют очень высокие температуры плавления (у алмаза свыше 3500 0 С), прочны и тверды, нелетучи, практически нерастворимы в жидкостях.

Металлические кристаллические решетки

Учитель: Ребята, у вас на столах коллекция металлов, рассмотрим эти образцы.

Вопрос: Какая химическая связь характерна для металлов?

Ответ: Металлическая. Связь в металлах между положительными ионами посредством обобществленных электронов.

Вопрос: Какие общие физические свойства для металлов характерны?

Ответ: Блеск, электропроводность, теплопроводность, пластичность.

Вопрос: Объясните, в чем причина того, что у такого числа разнообразных веществ одинаковые физические свойства?

Ответ: Металлы имеют единое строение.

Демонстрация моделей кристаллических решеток металлов.

Объяснение учителя.

Вещества с металлической связью имеют металлические кристаллические решетки

В узлах таких решеток находятся атомы и положительные ионы металлов, а в объеме кристалла свободно перемещаются валентные электроны. Электроны электростатически притягивают положительные ионы металлов. Этим объясняется стабильность решетки.

Молекулярные кристаллические решетки

Учитель демонстрирует и называет вещества: йод, сера.

Вопрос: Что объединяет эти вещества?

Ответ: Эти вещества являются неметаллами. Простые по составу.

Вопрос: Какая химическая связь внутри молекул?

Ответ: Химическая связь внутри молекул ковалентная неполярная.

Вопрос: Какие физические свойства для них характерны?

Ответ: Летучие, легкоплавкие, малорастворимые в воде.

Учитель: Давайте сравним свойства металлов и неметаллов. Ученики отвечают, что свойства принципиально отличаются.

Вопрос: Почему свойства неметаллов сильно отличаются от свойств металлов?

Ответ: У металлов связь металлическая, а у неметаллов ковалентная неполярная.

Учитель: Следовательно, и тип решетки другой. Молекулярная.

Вопрос: Какие частицы находятся в узлах решетки?

Ответ: Молекулы.

Демонстрация кристаллических решеток углекислого газа и йода.

Объяснение учителя.

Молекулярная кристаллическая решетка

Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H 2 ,O 2 ,N 2, I 2 , O 3 , белый фосфор Р 4 , но и сложные : твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи, способны к возгонке.

Вопрос : Какой процесс называется возгонкой или сублимацией?

Ответ : Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией .

Демонстрация опыта: возгонка бензойной кислоты (видеоопыт).

Работа с заполненной таблицей.

Приложение 1. (Слайд 17)

Кристаллические решетки, вид связи и свойства веществ

Тип решетки

Виды частиц в узлах решетки

Вид связи между частицами Примеры веществ Физические свойства веществ
Ионная Ионы Ионная – связь прочная Соли, галогениды (IA,IIA),оксиды и гидроксиды типичных металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
Атомная Атомы 1. Ковалентная неполярная - связь очень прочная

2. Ковалентная полярная - связь очень прочная

Простые веществ а : алмаз(C), графит(C) , бор(B), кремний(Si).

Сложные вещества:

оксид алюминия (Al 2 O 3), оксид кремния (IY)-SiO 2

Очень твердые, очень тугоплавкие, прочные,нелетучие, не растворимы в воде
Молекулярная Молекулы Между молекуми- слабые силы межмолекулярного притяжения, а вот внутри молекулпрочная ковалентная связь Твердые вещества при особых условиях, которые при обычных- газы или жидкости

(О 2 ,Н 2 ,Cl 2 ,N 2 ,Br 2 ,

H 2 O, CO 2 ,HCl);

сера, белый фосфор, йод; органические вещества

Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
Металлическая Атом-ионы Металлическаяразной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Вопрос: Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос: Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ-металлов- металлическая кристаллическая решетка; для неметаллов - атомная или молекулярная.

Работа с Периодической системой Д.И.Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ: Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IY A,Y A, YI A, YII A, YIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O , галогены и благородные газы ).

Учитель: Сформулируйте вывод, как можно определить тип кристаллической решетки простого вещества в зависимости от положения элементов в Периодической системе Д.И.Менделеева.

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA (кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IY A и бора в простом веществе кристаллическая решетка атомная; а у элементов Y A, YI A, YII A, YIII A в простых веществах кристаллическая решетка молекулярная.

Продолжаем работать с заполненной таблицей.

Учитель: Посмотрите внимательно на таблицу. Какая закономерность прослеживается?

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод:

Существует следующая закономерность: если известно строение веществ, то можно предсказать их свойства, или наоборот: если известны свойства веществ, то можно определить строение. (Cлайд 18).

Учитель: Посмотрите внимательно на таблицу. Какую еще классификацию веществ вы можете предложить?

Если ученики затрудняются, то учитель объясняет, что вещества можно разделить на вещества молекулярного и немолекулярного строения. (Cлайд 19).

Вещества молекулярного строения состоят из молекул.

Вещества немолекулярного строения состоят из атомов, ионов.

Закон постоянства состава

Учитель: Сегодня мы познакомимся с одним из основных законом химии. Это закон постоянства состава, который был открыт французским химиком Ж.Л.Прустом. Закон справедлив только для веществ молекулярного строения. В настоящее время закон читается так:”Молекулярные химические соединения независимо от способа их получения имеют постоянный состав и свойства”. Но для веществ с немолекулярным строением этот закон не всегда справедлив.

Теоретическое и практическое значение закона состоит в том, что на его основе состав веществ можно выразить с помощью химических формул(для многих веществ немолекулярного строения химическая формула показывает состав не реально существующей, а условной молекулы).

Вывод: химическая формула вещества заключает в себе большую информацию. (Cлайд 21)

Например, SO 3:

1. Конкретное вещество - серный газ, или оксид серы (YI).

2.Тип вещества - сложное; класс - оксид.

3. Качественный состав - состоит из двух элементов: серы и кислорода.

4. Количественный состав - молекула состоит из1 атома серы и 3 атомов кислорода.

5.Относительная молекулярная масса - M r (SO 3)= 32 + 3 * 16 = 80.

6. Молярная масса - М(SO 3) = 80 г/моль.

7. Много другой информации.

Закрепление и применение полученных знаний

(Слайд 22, 23).

Игра в крестики-нолики: зачеркните по вертикали, горизонтали, диагонали вещества, имеющие одинаковую кристаллическую решетку.

Рефлексия.

Учитель задает вопрос: “Ребята, что нового вы узнали на уроке?”.

Подведение итогов занятия

Учитель: Ребята, давайте подведем основные итоги нашего урока - ответьте на вопросы.

1. Какие классификации веществ вы узнали?

2. Как вы понимаете термин кристаллическая решетка.

3. Какие типы кристаллических решеток вы теперь знаете?

4. О какой закономерности строения и свойств веществ вы узнали?

5. В каком агрегатном состоянии вещества имеют кристаллические решетки?

6. С каким основным законом химии вы познакомились на уроке?

Домашнее задание: §22, конспект.

1. Составьте формулы веществ: хлорид кальция, оксид кремния (IY), азот, сероводород.

Определите тип кристаллической решетки и попытайтесь прогнозировать: каковы должны быть температуры плавления у этих веществ.

2. Творческое задание -> составить вопросы к параграфу.

Учитель благодарит за урок. Выставляет отметки ученикам.

Загрузка...