Про наши гаджеты. Понятные инструкции для всех

Простыми словами о сложном: что такое нейронные сети? Как устроены нейронные сети, и могут ли они захватить человечество Влияние человеком на нейронные сети

Искусственный интеллект, нейронные сети, машинное обучение - что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим являюсь и я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляет собой эта технология, как она работает, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Немного истории

Впервые понятие искусственных нейронных сетей (ИНС) возникло при попытке смоделировать процессы головного мозга. Первым серьезным прорывом в этой сфере можно считать создание модели нейронных сетей МакКаллока-Питтса в 1943 году. Учеными впервые была разработана модель искусственного нейрона. Ими также была предложена конструкция сети из этих элементов для выполнения логических операций. Но самое главное, учеными было доказано, что подобная сеть способна обучаться.

Следующим важным шагом стала разработка Дональдом Хеббом первого алгоритма вычисления ИНС в 1949 году, который стал основополагающем на несколько последующих десятилетий. В 1958 году Фрэнком Розенблаттом был разработан парцептрон - система, имитирующая процессы головного мозга. В свое время технология не имела аналогов и до сих пор является основополагающей в нейронных сетях. В 1986 году практически одновременно, независимо друг от друга американскими и советскими учеными был существенно доработан основополагающий метод обучения многослойного перцептрона . В 2007 году нейронные сети перенесли второе рождение. Британский информатик Джеффри Хинтоном впервые разработал алгоритм глубокого обучения многослойных нейронных сетей, который сейчас, например, используется для работы беспилотных автомобилей.

Коротко о главном

В общем смысле слова, нейронные сети - это математические модели, работающие по принципу сетей нервных клеток животного организма. ИНС могут быть реализованы как в программируемые, так и в аппаратные решения. Для простоты восприятия нейрон можно представить, как некую ячейку, у которой имеется множество входных отверстий и одно выходное. Каким образом многочисленные входящие сигналы формируются в выходящий, как раз и определяет алгоритм вычисления. На каждый вход нейрона подаются действенные значения, которые затем распространяются по межнейронным связям (синопсисам). У синапсов есть один параметр - вес, благодаря которому входная информация изменяется при переходе от одного нейрона к другому. Легче всего принцип работы нейросетей можно представить на примере смешения цветов. Синий, зеленый и красный нейрон имеют разные веса. Информация того нейрона, вес которого больше будет доминирующей в следующем нейроне.

Сама нейросеть представляет собой систему из множества таких нейронов (процессоров). По отдельности эти процессоры достаточно просты (намного проще, чем процессор персонального компьютера), но будучи соединенными в большую систему нейроны способны выполнять очень сложные задачи.

В зависимости от области применения нейросеть можно трактовать по-разному, Например, с точки зрения машинного обучения ИНС представляет собой метод распознавания образов. С математической точки зрения - это многопараметрическая задача. С точки зрения кибернетики - модель адаптивного управления робототехникой. Для искусственного интеллекта ИНС - это основополагающее составляющее для моделирования естественного интеллекта с помощью вычислительных алгоритмов.

Основным преимуществом нейросетей над обычными алгоритмами вычисления является их возможность обучения. В общем смысле слова обучение заключается в нахождении верных коэффициентов связи между нейронами, а также в обобщении данных и выявлении сложных зависимостей между входными и выходными сигналами. Фактически, удачное обучение нейросети означает, что система будет способна выявить верный результат на основании данных, отсутствующих в обучающей выборке.

Сегодняшнее положение

И какой бы многообещающей не была бы эта технология, пока что ИНС еще очень далеки от возможностей человеческого мозга и мышления. Тем не менее, уже сейчас нейросети применяются во многих сферах деятельности человека. Пока что они не способны принимать высокоинтеллектуальные решения, но в состоянии заменить человека там, где раньше он был необходим. Среди многочисленных областей применения ИНС можно отметить: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания изображений, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и многое другое. Такое широкое распространение нейросетей помимо прочего обусловлено появлением различных способов ускорения обучения ИНС.

На сегодняшний день рынок нейронных сетей огромен - это миллиарды и миллиарды долларов. Как показывает практика, большинство технологий нейросетей по всему миру мало отличаются друг от друга. Однако применение нейросетей - это очень затратное занятие, которое в большинстве случаев могут позволить себе только крупные компании. Для разработки, обучения и тестирования нейронных сетей требуются большие вычислительные мощности, очевидно, что этого в достатке имеется у крупных игроков на рынке ИТ. Среди основных компаний, ведущих разработки в этой области можно отметить подразделение Google DeepMind, подразделение Microsoft Research, компании IBM, Facebook и Baidu.

Конечно, все это хорошо: нейросети развиваются, рынок растет, но пока что главная задача так и не решена. Человечеству не удалось создать технологию, хотя бы приближенную по возможностям к человеческому мозгу. Давайте рассмотрим основные различия между человеческим мозгом и искусственными нейросетями.

Почему нейросети еще далеки до человеческого мозга?

Самым главным отличием, которое в корне меняет принцип и эффективность работы системы - это разная передача сигналов в искусственных нейронных сетях и в биологической сети нейронов. Дело в том, что в ИНС нейроны передают значения, которые являются действительными значениями, то есть числами. В человеческом мозге осуществляется передача импульсов с фиксированной амплитудой, причем эти импульсы практически мгновенные. Отсюда вытекает целый ряд преимуществ человеческой сети нейронов.

Во-первых, линии связи в мозге намного эффективнее и экономичнее, чем в ИНС. Во-вторых, импульсная схема обеспечивает простоту реализации технологии: достаточно использование аналоговых схем вместо сложных вычислительных механизмов. В конечном счете, импульсные сети защищены от звуковых помех. Действенные числа подвержены влиянию шумов, в результате чего повышается вероятность возникновения ошибки.

Итог

Безусловно, в последнее десятилетие произошел настоящий бум развития нейронных сетей. В первую очередь это связано с тем, что процесс обучения ИНС стал намного быстрее и проще. Также стали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий все больше становится похожим на правду.

Для тех, кто хочет знать больше

  • Большая нейронная война: что на самом деле затевает Google
  • Как когнитивные компьютеры могут изменить наше будущее

Статья на конкурс «био/мол/текст»: Клеточные процессы, обеспечивающие обмен информацией между нейронами, требуют много энергии. Высокое энергопотребление способствовало в ходе эволюции отбору наиболее эффективных механизмов кодирования и передачи информации. В этой статье вы узнаете о теоретическом подходе к изучению энергетики мозга, о его роли в исследованиях патологий, о том, какие нейроны более продвинуты, почему синапсам иногда выгодно не «срабатывать», а также, как они отбирают только нужную нейрону информацию.

Генеральный спонсор конкурса - компания : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро ».


«Книжный» спонсор конкурса - «Альпина нон-фикшн »

Происхождение подхода

С середины ХХ века известно, что головной мозг потребляет значительную часть энергоресурсов всего организма: четверть всей глюкозы и ⅕ всего кислорода в случае высшего примата . Это вдохновило Уильяма Леви и Роберта Бакстера из Массачусетского технологического института (США) на проведение теоретического анализа энергетической эффективности кодирования информации в биологических нейронных сетях (рис. 1) . В основе исследования лежит следующая гипотеза. Поскольку энергопотребление мозга велико, ему выгодно иметь такие нейроны, которые работают наиболее эффективно - передают только полезную информацию и затрачивают при этом минимум энергии.

Это предположение оказалось справедливым: на простой модели нейронной сети авторы воспроизвели экспериментально измеренные значения некоторых параметров . В частности, рассчитанная ими оптимальная частота генерации импульсов варьирует от 6 до 43 имп./с - почти так же, как и у нейронов основания гиппокампа . Их можно подразделить на две группы по частоте импульсации: медленные (~10 имп./с) и быстрые (~40 имп./с). При этом первая группа значительно превосходит по численности вторую . Аналогичная картина наблюдается и в коре больших полушарий: медленных пирамидальных нейронов (~4-9 имп./с) в несколько раз больше, чем быстрых ингибиторных интернейронов (>100 имп./с) , . Так, видимо, мозг «предпочитает» использовать поменьше быстрых и энергозатратных нейронов, чтобы те не израсходовали все ресурсы , .

Рисунок 1. Представлены два нейрона. В одном из них фиолетовым цветом окрашен пресинаптический белок синаптофизин . Другой нейрон полностью окрашен зеленым флуоресцентным белком . Мелкие светлые крапинки - синаптические контакты между нейронами . Во вставке одна «крапинка» представлена ближе.
Группы нейронов, связанных между собой синапсами, называются нейронными сетями , . Например, в коре больших полушарий пирамидальные нейроны и интернейроны образуют обширные сети. Слаженная «концертная» работа этих клеток обусловливает наши высшие когнитивные и другие способности. Аналогичные сети, только из других типов нейронов, распределены по всему мозгу, определенным образом связаны между собой и организуют работу всего органа.

Что такое интернейроны?

Нейроны центральной нервной системы разделяются на активирующие (образуют активирующие синапсы) и тормозящие (образуют тормозящие синапсы). Последние в значительной степени представлены интернейронами , или промежуточными нейронами. В коре больших полушарий и гиппокампе они ответственны за формирование гамма-ритмов мозга , которые обеспечивают слаженную, синхронную работу других нейронов. Это крайне важно для моторных функций, восприятия сенсорной информации, формирования памяти , .

Поиск оптимума

Фактически, речь идет о задаче оптимизации : поиска максимума функции и определения параметров, при которых он достигается. В нашем случае, функция - это отношение количества полезной информации к энергозатратам. Количество полезной информации можно примерно вычислить с помощью формулы Шеннона, широко используемой в теории информации , . Для расчета энергозатрат существуют два метода, и оба дают правдоподобные результаты , . Один из них - «метод счета ионов» - основан на подсчете количества ионов Na + , попавших внутрь нейрона при том или ином сигнальном событии (ПД или ПСП, см. врезку «Что такое потенциал действия ») с последующим переводом в число молекул аденозинтрифосфата (АТФ ), главной энергетической «валюты» клеток . Второй базируется на описании ионных токов через мембрану по законам электроники и позволяет вычислить мощность эквивалентной электрической цепи нейрона, которая затем переводится в затраты АТФ .

Эти «оптимальные» значения параметров затем нужно сравнить с измеренными экспериментально и определить, насколько они отличаются. Общая картина отличий укажет на степень оптимизации данного нейрона в целом: насколько реальные, измеренные экспериментально, значения параметров совпадают с рассчитанными. Чем слабее выражены отличия, тем нейрон более близок к оптимуму и работает энергетически более эффективно, оптимально. С другой стороны, сопоставление конкретных параметров покажет, в каком конкретно качестве этот нейрон близок к «идеалу».

Далее, в контексте энергетической эффективности нейронов рассмотрены два процесса, на которых основано кодирование и передача информации в мозге. Это нервный импульс, или потенциал действия, благодаря которому информация может быть отправлена «адресату» на определенное расстояние (от микрометров до полутора метров) и синаптическая передача, лежащая в основе собственно передачи сигнала от одного нейрона на другой.

Потенциал действия

Потенциал действия (ПД ) - сигнал, которые отправляют друг другу нейроны. ПД бывают разные: быстрые и медленные, малые и большие . Зачастую они организованы в длинные последовательности (как буквы в слова), либо в короткие высокочастотные «пачки» (рис. 2).

Рисунок 2. Разные типы нейронов генерируют различные сигналы. В центре - продольный срез мозга млекопитающего. Во вставках представлены разные типы сигналов, зарегистрированные методами электрофизиологии , . а - Кортикальные (Cerebral cortex ) пирамидальные нейроны могут передавать как низкочастотные сигналы (Regular firing ), так и короткие взрывные, или пачечные, сигналы (Burst firing ). б - Для клеток Пуркинье мозжечка (Cerebellum ) характерна только пачечная активность на очень высокой частоте. в - Релейные нейроны таламуса (Thalamus ) имеют два режима активности: пачечный и тонический (Tonic firing ). г - Нейроны средней части поводка (MHb , Medial habenula ) эпиталамуса генерируют тонические сигналы низкой частоты.

Что такое потенциал действия?

  1. Мембрана и ионы. Плазматическая мембрана нейрона поддерживает неравномерное распределение веществ между клеткой и внеклеточной средой (рис. 3б ) . В числе этих веществ есть и маленькие ионы, из которых для описания ПД важны К + и Nа + .
    Ионов Na + внутри клетки мало, снаружи - много. Из-за этого они постоянно стремятся попасть в клетку. Напротив, ионов К + много внутри клетки, и они норовят из нее выйти. Самостоятельно ионы этого сделать не могут, потому что мембрана для них непроницаема. Для прохождения ионов через мембрану необходимо открывание специальных белков - ионных каналов мембраны.
  2. Рисунок 3. Нейрон, ионные каналы и потенциал действия. а - Реконструкция клетки-канделябра коры головного мозга крысы. Синим окрашены дендриты и тело нейрона (синее пятно в центре), красным - аксон (у многих типов нейронов аксон разветвлен намного больше, чем дендриты , ). Зеленые и малиновые стрелки указывают направление потока информации: дендриты и тело нейрона принимают ее, аксон - отправляет ее к другим нейронам. б - Мембрана нейрона, как и любой другой клетки, содержит ионные каналы. Зеленые кружки - ионы Na + , синие - ионы К + . в - Изменение мембранного потенциала при генерации потенциала действия (ПД) нейроном Пуркинье. Зеленая область : Na-каналы открыты, в нейрон входят ионы Na + , происходит деполяризация. Синяя область: открыты К-каналы, К + выходит, происходит реполяризация. Перекрывание зеленой и синей областей соответствует периоду, когда происходит одновременный вход Na + и выход К + .

  3. Ионные каналы. Разнообразие каналов огромно , . Одни открываются в ответ на изменение мембранного потенциала, другие - при связывании лиганда (нейромедиатора в синапсе, например), третьи - в результате механических изменений мембраны и т.д. Открывание канала заключается в изменении его структуры, в результате которого через него могут проходить ионы. Некоторые каналы пропускают только определенный тип ионов, а для других характерна смешанная проводимость.
    В генерации ПД ключевую роль играют каналы, «чувствующие» мембранный потенциал, - потенциал-зависимые ионные каналы . Они открываются в ответ на изменение мембранного потенциала. Среди них нас интересуют потенциал-зависимые натриевые каналы (Na-каналы), пропускающие только ионы Na + , и потенциал-зависимые калиевые каналы (K-каналы), пропускающие только ионы К + .
  4. ПД - это относительно сильное по амплитуде скачкообразное изменение мембранного потенциала.

  5. Ионный ток и ПД. Основой ПД является ионный ток - движение ионов через ионные каналы мембраны . Так как ионы заряжены, их ток приводит к изменению суммарного заряда внутри и вне нейрона, что немедленно влечет за собой изменение мембранного потенциала.
    Генерация ПД, как правило, происходит в начальном сегменте аксона - в той его части, что примыкает к телу нейрона , . Тут сконцентрировано много Na-каналов. Если они откроются, внутрь аксона хлынет мощный ток ионов Na + , и произойдет деполяризация мембраны - уменьшение мембранного потенциала по абсолютной величине (рис. 3в ). Далее необходимо возвращение к его исходному значению - реполяризация . За это отвечают ионы К + . Когда К-каналы откроются (незадолго до максимума ПД), ионы К + начнут выходить из клетки и реполяризовать мембрану.
    Деполяризация и реполяризация - две основные фазы ПД. Помимо них выделяют еще несколько, которые из-за отсутствия необходимости здесь не рассматриваются. Детальное описание генерации ПД можно найти в , . Краткое описание ПД есть также в статьях на «Биомолекуле» , .
  6. Начальный сегмент аксона и инициация ПД. Что приводит к открыванию Na-каналов в начальном сегменте аксона? Опять же, изменение мембранного потенциала, «приходящее» по дендритам нейрона (рис. 3а ). Это - постсинаптические потенциалы (ПСП ), возникающие в результате синаптической передачи. Подробнее этот процесс объясняется в основном тексте.
  7. Проведение ПД. К ПД в начальном сегменте аксона будут неравнодушны Na-каналы, находящиеся неподалеку. Они тоже откроются в ответ на это изменение мембранного потенциала, что также вызовет ПД. Последний, в свою очередь, вызовет аналогичную «реакцию» на следующем участке аксона, все дальше от тела нейрона, и так далее. Таким образом происходит проведение ПД вдоль аксона , . В конце концов он достигнет его пресинаптических окончаний (малиновые стрелки на рис. 3а ), где сможет вызвать синаптическую передачу.
  8. Энергозатраты на генерацию ПД меньше, чем на работу синапсов. Скольких молекул аденозинтрифосфата (АТФ), главной энергетической «валюты», стоит ПД? По одной из оценок, для пирамидальных нейронов коры мозга крысы энергозатраты на генерацию 4 ПД в секунду составляют около ⅕ от общего энергопотребления нейрона. Если учесть другие сигнальные процессы, в частности, синаптическую передачу, доля составит ⅘. Для коры мозжечка, отвечающего за двигательные функции, ситуация похожа: энергозатраты на генерацию выходного сигнала составляют 15% от всех, а около половины приходится на обработку входной информации . Так, ПД является далеко не самым энергозатратным процессом. В разы больше энергии требует работа синапса , . Однако это не означает, что процесс генерации ПД не проявляет черт энергетической эффективности.

Анализ разных типов нейронов (рис. 4) показал, что нейроны беспозвоночных не очень энергоэффективны, а некоторые нейроны позвоночных почти совершенны . По результатам этого исследования, наиболее энергоэффективными оказались интернейроны гиппокампа , участвующего в формировании памяти и эмоций, а также таламокортикальные релейные нейроны, несущие основной поток сенсорной информации от таламуса к коре больших полушарий.

Рисунок 4. Разные нейроны эффективны по-разному. На рисунке представлено сравнение энергозатрат разных типов нейронов. Энергозатраты рассчитаны в моделях как с исходными (реальными) значениями параметров (черные столбцы ), так и с оптимальными, при которых с одной стороны нейрон выполняет положенную ему функцию, с другой - затрачивает при этом минимум энергии (серые столбцы ). Самыми эффективными из представленных оказались два типа нейронов позвоночных: интернейроны гиппокампа (rat hippocampal interneuron , RHI ) и таламокортикальные нейроны (mouse thalamocortical relay cell , MTCR ), так как для них энергозатраты в исходной модели наиболее близки к энергозатратам оптимизированной. Напротив, нейроны беспозвоночных менее эффективны. Условные обозначения: SA (squid axon ) - гигантский аксон кальмара; CA (crab axon ) - аксон краба; MFS (mouse fast spiking cortical interneuron ) - быстрый кортикальный интернейрон мыши; BK (honeybee mushroom body Kenyon cell ) - грибовидная клетка Кеньона пчелы.

Почему они более эффективны? Потому что у них малó перекрывание Na- и К-токов. Во время генерации ПД всегда есть промежуток времени, когда эти токи присутствуют одновременно (рис. 3в ). При этом переноса заряда практически не происходит, и изменение мембранного потенциала минимально. Но «платить» за эти токи в любом случае приходится, несмотря на их «бесполезность» в этот период. Поэтому его продолжительность определяет, сколько энергетических ресурсов растрачивается впустую. Чем он короче, тем более эффективно использование энергии , . Чем длиннее - тем менее эффективно. Как раз в двух вышеупомянутых типах нейронов, благодаря быстрым ионным каналам, этот период очень короткий, а ПД - самые эффективные .

Кстати, интернейроны гораздо более активны, чем большинство других нейронов мозга. В то же время они крайне важны для слаженной, синхронной работы нейронов, с которыми образуют небольшие локальные сети , . Вероятно, высокая энергетическая эффективность ПД интернейронов является некой адаптацией к их высокой активности и роли в координации работы других нейронов .

Синапс

Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе . Мы рассмотрим только химические синапсы (есть еще электрические ), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ .

На пресинаптическом окончании аксона ПД вызывает выброс нейромедиатора во внеклеточную среду - к принимающему нейрону. Последний только этого и ждет с нетерпением: в мембране дендритов рецепторы - ионные каналы определенного типа - связывают нейромедиатор, открываются и пропускают через себя разные ионы. Это приводит к генерации маленького постсинаптического потенциала (ПСП) на мембране дендрита. Он напоминает ПД, но значительно меньше по амплитуде и происходит за счет открывания других каналов. Множество этих маленьких ПСП, каждый от своего синапса, «сбегаются» по мембране дендритов к телу нейрона (зеленые стрелки на рис. 3а ) и достигают начального сегмента аксона, где вызывают открывание Na-каналов и «провоцируют» его на генерацию ПД.

Такие синапсы называются возбуждающими : они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы. Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции .

Как это ни странно, выброс нейромедиатора в синапсе может и не произойти вовсе - это процесс вероятностный , . Нейроны так экономят энергию: синаптическая передача и так обусловливает около половины всех энергозатрат нейронов . Если бы синапсы всегда срабатывали, вся энергия пошла бы на обеспечение их работы, и не осталось бы ресурсов для других процессов. Более того, именно низкая вероятность (20–40%) выброса нейромедиатора соответствует наибольшей энергетической эффективности синапсов. Отношение количества полезной информации к затрачиваемой энергии в этом случае максимально , . Так, выходит, что «неудачи» играют важную роль в работе синапсов и, соответственно, всего мозга. А за передачу сигнала при иногда «не срабатывающих» синапсах можно не беспокоиться, так как между нейронами обычно много синапсов, и хоть один из них да сработает.

Еще одна особенность синаптической передачи состоит в разделении общего потока информации на отдельные компоненты по частоте модуляции приходящего сигнала (грубо говоря, частоте приходящих ПД) . Это происходит благодаря комбинированию разных рецепторов на постсинаптической мембране , . Некоторые рецепторы активируются очень быстро: например, AMPA-рецепторы (AMPA происходит от α-a mino-3-hydroxy-5-m ethyl-4-isoxazolep ropionic a cid). Если на постсинаптическом нейроне представлены только такие рецепторы, он может четко воспринимать высокочастотный сигнал (такой, как, например, на рис. 2в ). Ярчайший пример - нейроны слуховой системы, участвующие в определении местоположения источника звука и точном распознавании коротких звуков типа щелчка, широко представленных в речи , . NMDA-рецепторы (NMDA - от N -m ethyl-D -a spartate) более медлительны. Они позволяют нейронам отбирать сигналы более низкой частоты (рис. 2г ), а также воспринимать высокочастотную серию ПД как нечто единое - так называемое интегрирование синаптических сигналов . Есть еще более медленные метаботропные рецепторы , которые при связывании нейромедиатора, передают сигнал на цепочку внутриклеточных «вторичных посредников » для подстройки самых разных клеточных процессов. К примеру, широко распространены рецепторы, ассоциированные с G-белками . В зависимости от типа они, например, регулируют количество каналов в мембране или напрямую модулируют их работу .

Различные комбинации быстрых AMPA-, более медленных NMDA- и метаботропных рецепторов позволяют нейронам отбирать и использовать наиболее полезную для них информацию, важную для их функционирования . А «бесполезная» информация отсеивается, она не «воспринимается» нейроном. В таком случае не приходится тратить энергию на обработку ненужной информации. В этом и состоит еще одна сторона оптимизации синаптической передачи между нейронами.

Что еще?

Энергетическая эффективность клеток мозга исследуется также и в отношении их морфологии , . Исследования показывают, что ветвление дендритов и аксона не хаотично и тоже экономит энергию , . Например, аксон ветвится так, чтобы суммарная длина пути, который проходит ПД, была наименьшей. В таком случае энергозатраты на проведение ПД вдоль аксона минимальны.

Снижение энергозатрат нейрона достигается также при определенном соотношении тормозящих и возбуждающих синапсов . Это имеет прямое отношение, например, к ишемии (патологическому состоянию, вызванному нарушением кровотока в сосудах) головного мозга. При этой патологии, вероятнее всего, первыми выходят из строя наиболее метаболически активные нейроны , . В коре они представлены ингибиторными интернейронами, образующими тормозящие синапсы на множестве других пирамидальных нейронов , . В результате гибели интернейронов, снижается торможение пирамидальных . Как следствие, возрастает общий уровень активности последних (чаще срабатывают активирующие синапсы, чаще генерируются ПД). За этим немедленно следует рост их энергопотребления, что в условиях ишемии может привести к гибели нейронов.

При изучении патологий внимание уделяют и синаптической передаче как наиболее энергозатратному процессу . Например, при болезнях Паркинсона , Хантингтона , Альцгеймера происходит нарушение работы или транспорта к синапсам митохондрий, играющих основную роль в синтезе АТФ , . В случае болезни Паркинсона, это может быть связано с нарушением работы и гибелью высоко энергозатратных нейронов черной субстанции , важной для регуляции моторных функций, тонуса мышц. При болезни Хантингтона, мутантный белок хангтингтин нарушает механизмы доставки новых митохондрий к синапсам, что приводит к «энергетическому голоданию» последних, повышенной уязвимости нейронов и избыточной активации. Все это может вызвать дальнейшие нарушения работы нейронов с последующей атрофией полосатого тела и коры головного мозга. При болезни Альцгеймера нарушение работы митохондрий (параллельно со снижением количества синапсов) происходит из-за отложения амилоидных бляшек . Действие последних на митохондрии приводит к окислительному стрессу, а также к апоптозу - клеточной гибели нейронов.

Еще раз обо всем

В конце ХХ века зародился подход к изучению мозга, в котором одновременно рассматривают две важные характеристики: сколько нейрон (или нейронная сеть, или синапс) кодирует и передает полезной информации и сколько энергии при этом тратит , . Их соотношение является своего рода критерием энергетической эффективности нейронов, нейронных сетей и синапсов.

Использование этого критерия в вычислительной нейробиологии дало существенный прирост к знаниям относительно роли некоторых явлений, процессов , . В частности, малая вероятность выброса нейромедиатора в синапсе , определенный баланс между торможением и возбуждением нейрона , выделение только определенного рода приходящей информации благодаря определенной комбинации рецепторов - все это способствует экономии ценных энергетических ресурсов.

Более того, само по себе определение энергозатрат сигнальных процессов (например, генерация, проведение ПД, синаптическая передача) позволяет выяснить, какой из них пострадает в первую очередь при патологическом нарушении доставки питательных веществ , . Так как больше всего энергии требуется для работы синапсов, именно они первыми выйдут из строя при таких патологиях, как ишемия, болезни Альцгеймера и Хантингтона , . Схожим образом определение энергозатрат разных типов нейронов помогает выяснить, какой из них погибнет раньше других в случае патологии. Например, при той же ишемии, в первую очередь выйдут из строя интернейроны коры , . Эти же нейроны из-за интенсивного метаболизма - наиболее уязвимые клетки и при старении, болезни Альцгеймера и шизофрении .

Благодарности

Искренне благодарен моим родителям Ольге Наталевич и Александру Жукову, сестрам Любе и Алене, моему научному руководителю Алексею Браже и замечательным друзьям по лаборатории Эвелине Никельшпарг и Ольге Слатинской за поддержку и вдохновение, ценные замечания, сделанные при прочтении статьи. Я также очень благодарен редактору статьи Анне Петренко и главреду «Биомолекулы» Антону Чугунову за пометки, предложения и замечания.

Литература

  1. Прожорливый мозг ;
  2. SEYMOUR S. KETY. (1957). THE GENERAL METABOLISM OF THE BRAIN IN VIVO . Metabolism of the Nervous System . 221-237;
  3. L. Sokoloff, M. Reivich, C. Kennedy, M. H. Des Rosiers, C. S. Patlak, et. al.. (1977). THE DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT . J Neurochem . 28 , 897-916;
  4. Magistretti P.J. (2008). Brain energy metabolism . In Fundamental neuroscience // Ed by. Squire L.R., Berg D., Bloom F.E., du Lac S., Ghosh A., Spitzer N. San Diego: Academic Press, 2008. P. 271–297;
  5. Pierre J. Magistretti, Igor Allaman. (2015). A Cellular Perspective on Brain Energy Metabolism and Functional Imaging . Neuron . 86 , 883-901;
  6. William B Levy, Robert A. Baxter. (1996). Energy Efficient Neural Codes . Neural Computation . 8 , 531-543;
  7. Sharp P.E. and Green C. (1994). Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat . J. Neurosci. 14 , 2339–2356;
  8. H. Hu, J. Gan, P. Jonas. (2014). Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function . Science . 345 , 1255263-1255263;
  9. Oliver Kann, Ismini E Papageorgiou, Andreas Draguhn. (2014). Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks . J Cereb Blood Flow Metab . 34 , 1270-1282;
  10. David Attwell, Simon B. Laughlin. (2001). An Energy Budget for Signaling in the Grey Matter of the Brain . J Cereb Blood Flow Metab . 21 , 1133-1145;
  11. Henry Markram, Maria Toledo-Rodriguez, Yun Wang, Anirudh Gupta, Gilad Silberberg, Caizhi Wu. (2004).

Биологический нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро и отростки. Выделяют два вида отростков. Аксон обычно - длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов).

Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи с 20-ю тысячами других нейронов. Кора головного мозга человека содержит десятки миллиардов нейронов.

Биологический нейрон является важнейшим элементом клеток нервной системы и строительным материалом мозга. Нейроны существуют в нескольких форма, в зависимости от их назначения и дислокации, но в целом они схожи по структуре.

Рис. 12.4 Схема нейрона

Каждый нейрон является устройством обработки информации, которое получает сигналы от других нейронов через специальную структуру ввода, состоящую из дендритов. Если совокупный входной сигнал превышает пороговый уровень, то клетка передает сигнал далее в аксон, а затем в структуру вывода сигнала, от которой он передается в другие нейроны. Сигналы передается с помощью электрических волн. (В течение жизни у человека число нейронов не увеличивается, но растет число связей между ними, как результат обучения).

Органы чувств человека состоят из большого числа нейронов, соединенных между собой множеством связей. Орган чувств включает в себя рецепторы и проводящие пути. В рецепторах формируются электрохимические сигналы, распространяющиеся со скоростью от 5 до 125 метров в секунду. Рецепторы кодируют различные виды сигналов в единый универсальный частотно-импульсный код.

Число нервных импульсов в единицу времени пропорционально интенсивности воздействия. Органы чувств имеют нижние и верхние пределы чувствительности. Реакция (Е) органов чувств человека на интенсивность (Р) раздражения можно приближенно представить законом Вебера - Фехнера:

Очевидно, если учесть при этом влияние шума, то можно прийти к формуле Шеннона, позволяющей оценить информационную способность такого органа чувств. Путем обучения и тренировки можно повысить разрешающую способность органов чувств. Кроме этого человек может различать сочетание частот и амплитуд , в такой степени, которая недоступна современным техническим устройствам. Но органы чувств функционируют в ограниченном диапазоне по частоте и амплитуде.

При переходе в возбужденное состояние в выходном отростке (аксоне) генерируется импульс возбуждения, распространяющийся по нему со скоростью от 1 до 100 м/с; в основе процесса распространения лежит изменение локальной проводимости мембраны аксона по отношению к ионам натрия и калия. Между нейронами нет прямых электрических связей. Перенос сигнала с аксона на входной отросток (дендрит) другого нейрона осуществляется химическим путем в специальной области – синапсе, где окончания двух нервных клеток подходят близко друг к другу. Некоторые из синапсов являются особыми, вырабатывающие сигналы обратной полярности для гашения сигналов возбуждения.

В настоящее время интенсивно изучаются и глобальные аспекты деятельности мозга – специализация его больших областей, функциональные связи между ними и т.п. В то же время мало известно, как же осуществляется обработка информации на промежуточном уровне, в участках нейронной сети, содержащей всего десятки тысяч нервных клеток.

Иногда мозг уподобляют колоссальной вычислительной машине, отличающейся от привычных компьютеров лишь существенно большим числом составляющих элементов. Считается, что каждый импульс возбуждения переносит единицу информации, а нейроны играют роль логических переключателей по аналогии с ЭВМ. Такая точка зрения ошибочна. Работа мозга основывается на совершенно иных принципах. В нем нет жесткой структуры связей между нейронами, которая была бы подобна электрической схеме ЭВМ. Надежность его отдельных элементов (нейронов) гораздо ниже, чем элементов, используемых для создания современных компьютеров. Разрушение даже таких участков, которые содержат довольно большое число нейронов, зачастую почти не влияет на эффективность обработки информации в этой области мозга. Часть нейронов отмирает при старении организма. Никакая вычислительная машина, построенная на традиционных принципах, не сможет работать при таких обширных повреждениях.

Современные ЭВМ выполняют операции последовательно, по одной операции на такт. Число извлекается из памяти , помещается в процессор , где над ним производится некоторое действие в соответствии с диктуемой программой инструкцией, и результат вновь заносится в память. Вообще говоря, при выполнении отдельной операции электрический сигнал должен пробежать по соединительным проводам определенное расстояние, что может ограничить быстродействие ЭВМ.

Например, если сигнал проходит расстояние в 30 см, то частота следования сигналов при этом не должна превышать 1 ГГц. Если операции выполняются последовательно, то предел быстродействия такой ЭВМ не превысит миллиарда операций в секунду. В действительности быстродействие, кроме того, ограничивается скоростью срабатывания отдельных элементов компьютера. Поэтому быстродействие современных ЭВМ уже довольно близко подошло к своему теоретическому пределу. Но этого быстродействия совершенно недостаточно, чтобы организовать управление сложными системами, решение задач «искусственного интеллекта» и др.

Если распространить приведенные рассуждения на человеческий мозг, то результаты будут абсурдными. Ведь скорость распространения сигналов по нервным волокнам в десятки и сотни миллионов раз меньше чем в ЭВМ. Если бы мозг работал, используя принцип современных ЭВМ, то теоретический предел его быстродействия составлял всего тысячи операций в секунду. Но этого явно недостаточно для объяснения существенно более высокой эффективности работы мозга.

Очевидно, деятельность мозга связана с параллельной обработкой информации. К настоящему времени организация параллельных вычислений уже используется в ЭВМ, например, с матричными процессорами, представляющими собой сеть из более простых процессоров, имеющих собственную память. Техника параллельного вычисления заключается в том, что элементарный процессор «знает» лишь о состоянии своего малого элемента среды. Основываясь на этой информации, каждый процессор вычисляет состояние своего элемента в следующий момент времени. При этом отсутствует ограничение быстродействия, связанное со скоростью распространения сигналов. Работа матричного процессора устойчива по отношению к локальным повреждениям.

Следующим этапом в развитие идеи параллельных вычислений явилось создание вычислительных сетей. Такое своеобразное «сообщество» компьютеров напоминает многоклеточный организм, который «живет своей жизнью». При этом функционирование вычислительной сети как сообщества компьютеров не зависит от того, как именно устроен каждый отдельный компьютер, какими процессами внутри него обеспечена обработка информации. Можно представить себе сеть, состоящую из очень большого числа примитивных компьютеров, способных выполнять всего несколько операций и хранить в своей памяти мгновенные значения нескольких величин.

С математической точки зрения подобные сети, состоящие из элементов с простым репертуаром реакций, принято рассматривать как клеточные автоматы . Мозг гораздо ближе по принципу работы и структуре к матричному процессору, чем к традиционной ЭВМ с последовательным выполнением операций. Однако существует фундаментальное различие между мозгом человека и любым параллельным компьютером. Дело в том, что нейронные сети мозга вообще не заняты никакими вычислениями. Абстрактное мышление (обращение с числами и математическими символами) вторично по отношению к фундаментальным механизмам работы мозга. Трудно себе представить, что когда, например, кошка настигает в прыжке птичку, ее мозг решает в считанные доли секунды системы нелинейных дифференциальных уравнений, описывающих траекторию прыжка и другие действия.

На эту тему можно привести следующее высказывание А. Эйнштейна: «Слова и язык, по-видимому, не играют никакой роли в моем механизме мышления. Физические сущности, которые в действительности, видимо, элементами мышления, - это определенные знаки и более или менее ясные образы, которые могут произвольно воспроизводиться и комбинироваться… Обычные слова приходиться подбирать лишь на второй стадии…».

Мозг работает как колоссальная «аналоговая» машина, где окружающий мир находит отражение в пространственно-временных структурах активности нейронов. Подобный механизм работы мозга мог естественно возникнуть в ходе биологической эволюции.

Для простейшего животного основная функция нервной системы состоит в том, чтобы преобразовать ощущения, вызываемые внешним миром, в определенную двигательную активность. На ранних стадиях эволюции связь между образом-ощущением и образом-движением является прямой, однозначной и наследственно закрепленной в исходной структуре соединений между нейронами. На более поздних стадиях эта связь усложняется, появляется способность к обучению. Образ-ощущение уже не связан жестко с планом действий. Вначале осуществляется его промежуточная обработка и сравнение с хранящимися в памяти картинами. Промежуточная обработка образов становится все более сложной по мере движения вверх по эволюционной лестнице. В конечном счете, после длительного развития, формируется процесс, называемый нами мышлением.

Для распознавания образов может быть использован принцип «клеточного автомата». Система обладает ассоциативной памятью, если при подаче на ее вход некоторой картинки она автоматически отбирает и подает на выход наиболее близкую к ней хранящуюся в памяти картину.

Экология жизни. Наука и открытия: Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням

Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням и стал жить дольше. Он пытается манипулировать генами, «выращивать» органы для трансплантации и путем клонирования «творить» живых существ.

Но для него по-прежнему остается величайшей загадкой, как функционирует его собственный мозг, как с помощью обычных электрических импульсов и небольшого набора нейромедиаторов нервная система не только координирует работу миллиардов клеток организма, но и обеспечивает возможность познавать, мыслить, запоминать, испытывать широчайшую гамму эмоций.

На пути к постижению этих процессов человек должен, прежде всего, понять, как функционируют отдельные нервные клетки (нейроны).

Величайшая загадка - как функционирует мозг

Живые электросети

По приблизительным оценкам, в нервной системе человека более 100 млрд нейронов . Все структуры нервной клетки ориентированы на выполнение важнейшей для организма задачи – получение, переработка, проведение и передача информации, закодированной в виде электрических или химических сигналов (нервных импульсов).

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро, развитый белок-синтезирующий аппарат и другие органеллы, а также отростков: одного аксона, и нескольких, как правило, ветвящихся, дендритов. Длина аксонов обычно заметно превосходит размеры дентритов, в отдельных случаях достигая десятков сантиметров и даже метров.

Например, гигантский аксон кальмараимеет толщину около 1 мм и несколько метров в длину; экспериментаторы не преминули воспользоваться такой удобной моделью, и опыты именно с нейронами кальмаров послужили выяснению механизма передачи нервных импульсов.

Снаружи нервная клетка окружена оболочкой (цитолеммой), которая не только обеспечивает обмен веществ между клеткой и окружающей средой, но также способна проводить нервный импульс.

Дело в том, что между внутреннней поверхностью мембраны нейрона и внешней средой постоянно поддерживается разность электрических потенциалов. Это происходит благодаря работе так называемых «ионных насосов» – белковых комплексов, осуществляющих активный транспорт положительно заряженных ионов калия и натрия через мембрану.

Такой активный перенос, а также постоянно протекающая пассивная диффузия ионов через поры в мембране обуславливают в покое отрицательный относительно внешней среды заряд с внутренней стороны мембраны нейрона.

Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений (активное поступление ионов натрия в нейрон и кратковременное изменение заряда с внутренней стороны мембраны с отрицательного на положительный), которые распространяются по всей нервной клетке.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, нервный импульс в процессе распространения постоянно восстанавливается .

Основными функциями нервной клетки являются:

  • восприятие внешних раздражений (рецепторная функция),
  • их переработка (интегративная функция),
  • передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция).

По дендритам – инженеры назвали бы их «приемниками» – импульсы поступают в тело нервной клетки, а по аксону – «передатчику» – идут от ее тела к мышцам, железам или другим нейронам.

В зоне контакта

Аксон имеет тысячи ответвлений, которые тянутся к дендритам других нейронов. Зона функционального контакта аксонов и дендритов называется синапсом .

Чем больше синапсов на нервной клетке, тем больше воспринимается различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия нервной клетки в разнообразных реакциях организма. На телах крупных мотонейронов спинного мозга может насчитываться до 20 тыс синапсов.

В синапсе происходит преобразование электрических сигналов в химические и обратно. Передача возбуждения осуществляется с помощью биологически активных веществ – нейромедиаторов (ацетилхолина, адреналина, некоторых аминокислот, нейропептидов и др.). О ни содержатся в особых пузырьках, находящихся в окончаниях аксонов – пресинаптической части.

Когда нервный импульс достигает пресинаптической части, происходит выброс нейромедиаторов в синаптическую щель, они связываются с рецепторами, расположенными на теле или отростках второго нейрона (постсинаптической части), что приводит к генерации электрического сигнала – постсинаптического потенциала.

Величина электрического сигнала прямо пропорциональна количеству нейромедиатора.

Одни синапсы вызывают деполяризацию нейрона, другие – гиперполяризацию; первые являются возбуждающими, вторые – тормозящими.

После прекращения выделения медиатора происходит удаление его остатков из синаптической щели и возвращение рецепторов постсинаптической мембраны в исходное состояние. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, определяет, будет ли он в данный момент генерировать нервный импульс.

Нейрокомпьютеры

Попытка смоделировать принципы работы биологических нейронных сетей привела к созданию такого устройства переработки информации как нейрокомпьютер .

В отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределенную в связях (своего рода синапсах) между очень простыми процессорами, которые формально могут быть названы нейронами.

Нейрокомпьютеры не программируют в традиционном смысле этого слова, а «обучают», настраивая эффективность всех «синаптических» связей между составляющими их «нейронами».

Основными сферами применения нейрокомпьютеров их разработчики видят:

  • распознавание визуальных и звуковых образов;
  • экономическое, финансовое, политическое прогнозирование;
  • управление в реальном времени производственными процессами, ракетами, самолетами;
  • оптимизация при конструировании технических устройств и т.д.

«Голова – предмет темный…»

Нейроны можно разбить на три большие группы:

  • рецепторные,
  • промежуточные,
  • эффекторные.

Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические – в ушной улитке, обонятельные – в хеморецепторах носа и др.), в электрическую импульсацию своих аксонов.

Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и генерируют управляющие сигналы для эффекторов. Нейроны этой группы образуют центральную нервную систему (ЦНС).

Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.

Если принципы функционирования рецепторных и эффекторных нейронов более или менее понятны ученым, то промежуточный этап, на котором организм «переваривает» поступившую информацию и принимает решение о том, как на нее отреагировать, понятен лишь на уровне простейших рефлекторных дуг.

В большинстве же случаев нейрофизиологический механизм формирования тех или иных реакций остается загадкой. Не даром в научно-популярной литературе головной мозг человека часто сравнивают с «черным ящиком».

«…В вашей голове живут 30 млрд нейронов, хранящих ваши знания, навыки, накопленный жизненный опыт. После 25 лет размышлений данный факт кажется мне не менее поразительным, чем раньше. Тончайшая пленка, состоящая из нервных клеток, видит, чувствует, творит наше мировоззрение. Это просто невероятно! Наслаждение теплотой летнего дня и смелые мечты о будущем – все создается этими клетками… Ничего другого не существует: никакой магии, никакого специального соуса, только нейроны, исполняющие информационный танец,» – писал в своей книге «Об интеллекте» известнейший разработчик компьютеров, основатель Редвудского института нейрологии (США) Джефф Хокинс.

Уже более полувека тысячи ученых-нейрофизиологов во всем мире пытаются понять хореографию этого «информационного танца», однако на сегодня известны лишь его отдельные фигуры и па, не позволяющие создать универсальную теорию функционирования головного мозга.

Следует отметить, что многие работы в области нейрофизиологии посвящены так называемой «функциональной локализации» – выяснению того, какой нейрон, группа нейронов или целая область мозга активируется в тех или иных ситуациях.

На сегодня накоплен огромный массив информации о том, какие нейроны у человека, крысы, обезьяны избирательно активируются при наблюдении различных объектов, вдыхании феромонов, прослушивании музыки, разучивании стихотворений и т.д.

Правда, иногда подобные опыты кажутся несколько курьезными. Так, еще в 70-е годы прошлого века одним из исследователей в мозге у крысы были обнаружены «нейроны зеленого крокодильчика»: эти клетки активировались, когда бегущее по лабиринту животное среди прочих предметов натыкалось на уже знакомую ему игрушку маленького зеленого крокодильчика.

А другим ученым позднее в мозге у человека был локализован нейрон, «реагирующий» на фотографию президента США Била Клинтона.

Все эти данные подтверждают теорию о том, что нейроны в головном мозге специализированы , однако ни в коей мере не объясняют, почему и каким образом происходит эта специализация.

Лишь в общих чертах понятны ученым нейрофизиологические механизмы обучения и памяти. Предполагается, что в процессе запоминания информации происходит формирование новых функциональных контактов между нейронами коры головного мозга.

Иными словами, нейрофизиологическим «следом» памяти являются синапсы. Чем больше возникает новых синапсов, тем «богаче» память индивидуума. Типичная клетка в коре головного мозга образует несколько (до 10) тысяч синапсов. С учетом общего числа нейронов коры получается, что всего здесь могут сформироваться сотни миллиардов функциональных контактов!

Под влиянием каких-либо ощущений, мыслей или эмоций происходит припоминание – возбуждение отдельных нейронов активизирует весь ансамбль, ответственный за хранение той или иной информации.

В 2000 г шведскому фармакологу Арвиду Карлссону и американским нейробиологам Полу Грингарду и Эрику Кенделу была присуждена Нобелевская премия по физиологии и медицине за открытия, касающиеся «передачи сигналов в нервной системе».

Ученые продемонстрировали, что память большинства живых существ работает благодаря действию так называемых нейротрансмиттеров дофамина, норадреналина и серотонина , эффект которых в отличие от классических нейромедиаторов развивается не за миллисекунды, а за сотни миллисекунд, секунды и даже часы. Именно этим и обусловлено их длительное, модулирующее влияние на функции нервных клеток, их роль в управлении сложными состояниями нервной системы – воспоминаниями, эмоциями, настроениями.

Следует также отметить, что величина сигнала, генерируемого на постсинаптической мембране, может быть различной даже при одинаковой величине исходного сигнала, достигшего пресинаптической части. Эти различия определяет так называемая эффективность, или вес, синапса, который может изменяться в процессе функционирования межнейронного контакта.

По мнению многих исследователей, изменение эффективности синапсов также играет немаловажную роль в работе памяти. Возможно, часто используемая человеком информация хранится в нейронных сетях, связанных высокоэффективными синапсами, и поэтому быстро и легко «вспоминается». В то же время, синапсы, участвующие в хранении второстепенных, редко «извлекаемых» данных, по-видимому, характеризуются низкой эффективностью.

А все-таки они восстанавливаются!

Одна из наиболее волнующих с медицинской точки зрения проблем нейробиологии – возможность регенерации нервной ткани . Известно, что перерезанные или поврежденные волокна нейронов периферической нервной системы, окруженные неврилеммой (оболочкой из специализированных клеток), могут регенерировать, если тело клетки сохранилось в целости. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона.

Аксоны в ЦНС не окружены неврилеммой и поэтому, по-видимому, не способны вновь прорастать к месту прежнего окончания.

В то же время, до недавнего времени нейрофизиологи считали, что в течение жизни человека новые нейроны в ЦНС не образуются.

«Нервные клетки не восстанавливаются!», – предостерегали нас ученые. Предполагалось, что поддержание нервной системы в «рабочем состоянии» даже при серьезных заболеваниях и травмах происходит благодаря ее исключительной пластичности: функции погибших нейронов берут на себя их оставшиеся в живых «коллеги», которые увеличиваются в размерах и формируют новые связи.

Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Получается, что одна живая нервная клетка может функционально заменить девять погибших!

В настоящее время доказано, что в головном мозге взрослых млекопитающих образование новых нервных клеток (нейрогенез) все же происходит. Еще в 1965 г было показано, что новые нейроны регулярно появляются у взрослых крыс в гиппокампе – области мозга отвечающей за ранние фазы обучения и памяти.

Спустя 15 лет ученые показали, что в мозге птиц новые нервные клетки появляются на протяжении всей жизни. Однако исследования мозга взрослых приматов на предмет нейрогенеза не давали обнадеживающих результатов.

Лишь около 10 лет назад американские ученые разработали методику, которая доказала, что в мозге обезьян в течение всей жизнииз нейрональных стволовых клеток продуцируются новые нейроны. Исследователи вводили животным специальное вещество-метку (бромдиоксиуридин), которое включалось в ДНК только делящихся клеток.

Так было обнаружено, что новые клетки начинали размножаться в субвентрикулярной зоне и уже оттуда мигрировали в кору, где и созревали до взрослого состояния. Новые нейроны обнаруживались в зонах головного мозга, связанных с когнитивными функциями, и не возникали в зонах, реализующих более примитивный уровень анализа.

В связи с этим ученые предположили, что новые нейроны могут быть важны для процесса обучения и памяти .

В пользу данной гипотезы говорит также следующее: большой процент новых нейронов гибнет в первые недели после того, как они родились; однако в тех ситуациях, когда происходит постоянное обучение, доля выживших нейронов значительно выше, чем тогда, когда они «не востребованы» – когда животное лишено возможности образовывать новый опыт.

На сегодня установлены универсальные механизмы гибели нейронов при различных заболеваниях:

1) повышение уровня свободных радикалов и окислительное повреждение мембран нейронов;

2) нарушение деятельности митохондрий нейронов;

3) неблагоприятное действие избытка возбуждающих нейротрансмиттеров глутамата и аспартата, приводящее к гиперактивации специфических рецепторов, избыточному накоплению внутриклеточного кальция, развитию окислительного стресса и гибели нейрона (феномен эксайтотоксичности).

Исходя из этого, в качестве лекарственных средств – нейропротекторов в неврологии используют:

  • препараты с антиоксидантными свойствами (витамины Е и С, др.),
  • корректоры тканевого дыхания (коэнзим Q10, янтарная кислота, рибофлавини, др),
  • а также блокаторы рецепторов глутамата (мемантин, др.).

Примерно в то же время была подтверждена возможность появления новых нейронов из стволовых клеток в головном мозге взрослого человека: патологоанатомическое исследование пациентов, получавших при жизни бромдиоксиуридин с терапевтической целью, показало, что нейроны, содержащие данное вещество-метку, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий.

Этот феномен всесторонне исследуется с целью лечения различных нейродегенеративных заболеваний, прежде всего болезней Альцгеймера и Паркинсона, ставших настоящим бичом для «стареющего» населения развитых стран.

В экспериментах для трансплантации используют как нейрональные стволовые клетки, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга, так и эмбриональные стволовые клетки, способные превращаться практически в любые клетки организма.

К сожалению, на сегодняшний день врачи не могут разрешить основную проблему, связанную с пересадкой нейрональных стволовых клеток: их активное размножение в организме реципиента в 30-40% случаев приводит к образованию злокачественных опухолей.

Несмотря на это, специалисты не теряют оптимизма и называют трансплантацию стволовых клетокодним из наиболее перспективных подходов в терапии нейродегенеративных заболеваний. опубликовано . Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Нейронные сети – это одно из направлений исследований в области искусственного интеллекта, основанное на попытках воспроизвести нервную систему человека. А именно: способность нервной системы обучаться и исправлять ошибки, что должно позволить смоделировать, хотя и достаточно грубо, работу человеческого мозга.

или нервная система человека – это сложная сеть структур человека, обеспечивающая взаимосвязанное поведение всех систем организма.

Биологический нейрон – это специальная клетка, которая структурно состоит из ядра, тела клетки и отростков. Одной из ключевых задач нейрона является передача электрохимического импульса по всей нейронной сети через доступные связи с другими нейронами. Притом, каждая связь характеризуется некоторой величиной, называемой силой синаптической связи. Эта величина определяет, что произойдет с электрохимическим импульсом при передаче его другому нейрону: либо он усилится, либо он ослабится, либо останется неизменным.

Биологическая нейронная сеть обладает высокой степенью связности: на один нейрон может приходиться несколько тысяч связей с другими нейронами. Но, это приблизительное значение и в каждом конкретном случае оно разное. Передача импульсов от одного нейрона к другому порождает определенное возбуждение всей нейронной сети. Величина этого возбуждения определяет реакцию нейронной сети на какие-то входные сигналы. Например, встреча человека со старым знакомым может привести к сильному возбуждению нейронной сети, если с этим знакомым связаны какие-то яркие и приятные жизненные воспоминания. В свою очередь сильное возбуждение нейронной сети может привести к учащению сердцебиения, более частому морганию глаз и к другим реакциям. Встреча же с незнакомым человеком для нейронной сети пройдет практически незаметной, а значит и не вызовет каких-либо сильных реакций.

Можно привести следующую сильно упрощенную модель биологической нейронной сети:

Каждый нейрон состоит из тела клетки, которое содержит ядро. От тела клетки ответвляется множество коротких волокон, называемых дендритами. Длинные дендриты называются аксонами. Аксоны растягиваются на большие расстояния, намного превышающее то, что показано в масштабе этого рисунка. Обычно аксоны имеют длину 1 см (что превышает в 100 раз диаметр тела клетки), но могут достигать и 1 метра.

В 60-80 годах XX века приоритетным направлением исследований в области искусственного интеллекта были . Экспертные системы хорошо себя зарекомендовали, но только в узкоспециализированных областях. Для создания более универсальных интеллектуальных систем требовался другой подход. Наверное, это привело к тому, что исследователи искусственного интеллекта обратили внимание на биологические нейронные сети, которые лежат в основе человеческого мозга.

Нейронные сети в искусственном интеллекте – это упрощенные модели биологических нейронных сетей.

На этом сходство заканчивается. Структура человеческого мозга гораздо более сложная, чем описанная выше, и поэтому воспроизвести ее хотя бы более менее точно не представляется возможным.

У нейронных сетей много важных свойств, но ключевое из них – это способность к обучению. Обучение нейронной сети в первую очередь заключается в изменении «силы» синаптических связей между нейронами. Следующий пример наглядно это демонстрирует. В классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик. Собака достаточно быстро научилась ассоциировать звонок колокольчика с приемом пищи. Это явилось следствием того, что синаптические связи между участками головного мозга, ответственными за слух и слюнные железы, усилились. И в последующем возбуждение нейронной сети звуком колокольчика, стало приводить к более сильному слюноотделению у собаки.

На сегодняшний день нейронные сети являются одним из приоритетных направлений исследований в области искусственного интеллекта.

Загрузка...