Про наши гаджеты. Понятные инструкции для всех

Плотность распределения случайной величины определение. Математическое ожидание непрерывной случайной величины. Отыскание плотностей вероятности составляющих двумерной случайной величины

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть .

Для дискретной случайной величины

M [X] =

Для непрерывной случайной величины

    Мода – это наиболее вероятное значение случайной величины (то для которого вероятность p i , или плотность распределения f(x) достигает максимума).

Обозначение: 

Различают унимодальные распределения (имеют одну моду), полимодальные распределения (имеют несколько мод) и анимодальные (не имеют моды)

унимодальное

    Медиана – это такое значение случайной величины х m , для которого выполняется следующее равенство:

P{X < х m }= P{X > х m }

Медиана делит площадь,ограниченную f(x), пополам

Если плотность распределения случайной величины симметрична и унимодальна, то М[X],  и х m совпадают

М[X], , х m – неслучайные величины

Пусть дискретная физическая величина Х может принимать в результате опыта значения . Отношение числа опытов , в результате которых величина принимает значение , к общему числу проведенных опытов n называется частотой появления события . Частота является случайной величиной и меняется в зависимости от количества проведенных опытов. Однако при большом количестве опытов (в пределе n → ∞) она стабилизируется около некоторого значения , называемого вероятностью события (статистическое определение):

Очевидно, что сумма вероятностей реализации всех возможных значений случайной величины равна единице:

Дискретную случайную величину можно полностью задать вероятностным рядом, указав вероятность для каждого значения :

Законом распределения случайной величины называют любое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Вероятностный ряд является одним из видов законов распределения случайной величины. Распределение непрерывной случайной величины нельзя задать вероятностным рядом, поскольку число значений, которое она может принимать, так велико, что для большинства из них вероятность принять эти значения равна нулю. Поэтому для непрерывных физических величин изучается вероятность того, что в результате опыта значение случайной величины попадет в некоторый интервал. Удобно пользоваться вероятностью события , где - произвольное действительное число. Эта вероятность

является функцией от и называется функцией распределения (предельной функцией распределения, функцией распределения генеральной совокупности) случайной величины. В виде функции распределения можно задать распределение как непрерывной, так и дискретной случайной величины (рис. 2 и 3). F(x) является неубывающей функцией, т.е. если х1 ≤ х2, то F(х1) ≤ F(х2) (рис. 3).

Рис. 2. Функция распределения Рис. 3. Функция распределения

дискретной случайной величины. непрерывной случайной величины.

Ордината кривой , соответствующая точке , представляет собой вероятность того, что случайная величина при испытании окажется . Тогда вероятность того, что значения случайной величины будут лежать в интервале от , до , равна

Значения при предельных значениях аргумента равны , . Следует отметить, что функция распределения дискретной случайной величины всегда есть разрывная функция. Скачки происходят в точках, соответствующих возможным значениям этой величины, и равны вероятностям этих значений (рис. 2).

  • Полная группа событий. Противоположные события. Соот­ношение между вероятностями противоположных событий (с вы­водом).
  • Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятнос­тей (с доказательством).
  • Формулы полной вероятности и Байеса (с доказательством). Примеры.
  • Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
  • Локальная теорема Муавра-Лапласа, условия ее примени­мости. Свойства функции Дх). Пример.
  • Асимптотическая формула Пуассона и условия ее примени­мости. Пример.
  • Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
  • Следствия из интегральной теоремы Муавра-Лапласа (с вы­водом). Примеры.
  • Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
  • Дисперсия дискретной случайной величины и ее свойства (с вы­водом). Примеры.
  • Функция распределения случайной величины, ее определе­ние, свойства и график.
  • Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дис­персия нсв.
  • Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
  • Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.
  • Математическое ожидание и дисперсия числа и частости на­ступлений события в п повторных независимых испытаниях (с выводом).
  • Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
  • Функция распределения нормально распределенной случай­ной величины и ее выражение через функцию Лапласа.
  • Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интер­вал; б) ее отклонения от математического ожидания. Правило «трехсигм».
  • Понятие двумерной (/7-мерной) случайной величины. При­меры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таб­лице распределения.
  • Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.
  • Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
  • Неравенство Маркова (лемма Чебышева) (с выводом). При­мер.
  • Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному за­кону, и для частости события.
  • Теорема Чебышева (с доказательством), ее значение и след­ствие. Пример.
  • Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
  • Неравенство Чебышева для средней арифметической случай­ных величин (с выводом).
  • Центральная предельная теорема. Понятие о теореме Ляпу­нова и ее значение. Пример.
  • Вариационный ряд, его разновидности. Средняя арифмети­ческая и дисперсия ряда. Упрощенный способ их расчета.
  • Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
  • Оценка генеральной доли по собственно-случайной выбор­ке. Несмещенность и состоятельность выборочной доли.
  • Оценка генеральной средней по собственно-случайной вы­борке. Несмещенность и состоятельность выборочной средней.
  • Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
  • Понятие об интервальном оценивании. Доверительная ве­роятность и доверительный интервал. Предельная ошибка выбор­ки. Ошибки репрезентативности выборки (случайные и систематические).
  • Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.
  • Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.
  • Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
  • Построение теоретического закона распределения по опыт­ным данным. Понятие о критериях согласия.
  • Критерий согласия х2-Пирсона и схема его применения.
  • Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
  • Линейная парная регрессия. Система нормальных уравне­ний для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
  • Упрощенный способ:
  • Оценка тесноты связи. Коэффициент корреляции (выбороч­ный), его свойства и оценка достоверности.
    1. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.

    Про случайную величину Х говорят, что она имеет распределение (распределена) с плотностью
    на определенном участке оси абсцисс. Плотность вероятности
    , как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения она существует толькодля непрерывных случайных величин . Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности
    называетсякривой распределения .

    Свойства плотности вероятности непрерывной случайной величины.



    как производная монотонно неубывающей функции F(х). ☻



    Согласно свойству 4 функции распределения . Так как F(x) - первообразная для плотности вероятности
    (т.к.
    , то по формуле Ньютона-Лейбница приращение первообразной на отрезке [а,b] – определенный интеграл
    . ☻

    Геометрически полученная вероятность равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [а,b] (рис. 3.8).

      Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле :

    .

    Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 3.9).


    Геометрически свойства 1 и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

    1. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.

    Определение . Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,... ,n с вероятностями

    где 0<р

    Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

    Ряд распределения биномиального закона имеет вид:

    Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения
    выполнено, ибоесть не что иное, как сумма всех членов разложения бинома Ньютона:

    Математическое ожидание случайной величины Х, распределенной по биноминальному закону,

    а ее дисперсия

    Определение . Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m, ... (бесконечное, но счетное множество значений) с вероятностями
    ,

    Ряд распределения закона Пуассона имеет вид:

    Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения
    выполнено, ибо сумма ряда.

    На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Р m (λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.

    Теорема . Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.

    и

    "

    Пусть $X$ -- непрерывная случайная величина с функцией распределения вероятностей $F(x)$. Напомним определение функции распределения:

    Определение 1

    Функцией распределения называется функция $F(x)$ удовлетворяющая условию $F\left(x\right)=P(X

    Так как случайная величина является непрерывной, то, как нам уже известно, функция распределения вероятностей $F(x)$ будет непрерывной функцией. Пусть $F\left(x\right)$ также дифференцируема на всей области определения.

    Рассмотрим интервал $(x,x+\triangle x)$ (где $\triangle x$ - приращение величины $x$). На нем

    Теперь устремляя значения приращения $\triangle x$ к нулю, получим:

    Рисунок 1.

    Таким образом, получаем:

    Плотность распределения, как и функция распределения, - это одна из форм закона распределения случайной величины. Однако закон распределения может быть записан через плотность распределения только для непрерывных случайных величин.

    Определение 3

    Кривая распределения -- это график функции $\varphi \left(x\right)$ плотность распределения случайной величины (рис.1).

    Рисунок 2. График плотности распределения.

    Геометрический смысл 1: Вероятность попадания непрерывной случайной величины в интервал $(\alpha ,\beta)$ равна площади криволинейной трапеции, ограниченной графиком функции распределения $\varphi \left(x\right)$ и прямыми $x=\alpha ,$ $x=\beta $ и $y=0$ (рис. 2).

    Рисунок 3. Геометрическое изображение вероятности попадания непрерывной случайной величины в интервал $(\alpha ,\beta)$.

    Геометрический смысл 2: Площадь бесконечной криволинейной трапеции, ограниченной графиком функции распределения $\varphi \left(x\right)$, прямой $y=0$ и переменной прямой $x$ есть ни что иное как функция распределения $F(x)$(рис. 3).

    Рисунок 4. Геометрическое изображение функции вероятности $F(x)$ через плотность распределения $\varphi \left(x\right)$.

    Пример 1

    Пусть функция распределения $F(x)$ случайной величины $X$ имеет следующий вид.

    Загрузка...