Про наши гаджеты. Понятные инструкции для всех

С 10 решение неравенств методом интервалов гдз. Метод интервалов: решение простейших строгих неравенств

Как решать неравенства методом интервалов (алгоритм с примерами)

Пример . (задание из ОГЭ) Решите неравенство методом интервалов \((x-7)^2< \sqrt{11}(x-7)\)
Решение:

Ответ : \((7;7+\sqrt{11})\)

Пример . Решите неравенство методом интервалов \(≥0\)
Решение:

\(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\) \(≥0\)

Здесь на первый взгляд все кажется нормальным, а неравенство изначально приведенным к нужному виду. Но это не так – ведь в первой и третьей скобке числителя икс стоит со знаком минус.

Преобразовываем скобки, с учетом того, что четвертая степень - четная (т.е. уберет знак минус), а третья – нечетная (т.е. не уберет).
\((4-x)^3=(-x+4)^3=(-(x-4))^3=-(x-4)^3\)
\((6-x)^4=(-x+6)^4=(-(x-6))^4=(x-6)^4\)
Вот так. Теперь возвращаем скобки «на место» уже преобразованными.

\(\frac{-(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≥0\)

Теперь все скобки выглядят как надо (первым идет иск без знака и только потом число). Но перед числителем появился минус. Убираем его, умножая неравенство на \(-1\), не забыв при этом перевернуть знак сравнения

\(\frac{(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≤0\)

Готово. Вот теперь неравенство выглядит как надо. Можно применять метод интервалов.

\(x=4;\) \(x=-6;\) \(x=6;\) \(x=-7,5\)

Расставим точки на оси, знаки и закрасим нужные промежутки.

В промежутке от \(4\) до \(6\), знак не надо менять, потому что скобка \((x-6)\) в четной степени (см. пункт 4 алгоритма). Флажок будет напоминанием о том, что шестерка - тоже решение неравенства.
Запишем ответ.

Ответ : \((-∞;7,5]∪[-6;4]∪\left\{6\right\}\)

Пример. (Задание из ОГЭ) Решите неравенство методом интервалов \(x^2 (-x^2-64)≤64(-x^2-64)\)
Решение:

\(x^2 (-x^2-64)≤64(-x^2-64)\)

Слева и справа есть одинаковые – это явно не случайно. Первое желание – поделить на \(-x^2-64\), но это ошибка, т.к. есть шанс потерять корень. Вместо этого перенесем \(64(-x^2-64)\) в левую сторону

\(x^2 (-x^2-64)-64(-x^2-64)≤0\)

\((-x^2-64)(x^2-64)≤0\)

Вынесем минус в первой скобки и разложим на множители вторую

\(-(x^2+64)(x-8)(x+8)≤0\)

Обратите внимание: \(x^2\) либо равно нулю, либо больше нуля. Значит, \(x^2+64\) – однозначно положительно при любом значении икса, то есть это выражение никак не влияет на знак левой части. Поэтому можно смело делить обе части неравенства на это выражение.
Поделим неравенство так же на \(-1\) , чтобы избавиться от минуса.

\((x-8)(x+8)≥0\)

Теперь можно применять метод интервалов

\(x=8;\) \(x=-8\)

Запишем ответ

Ответ : \((-∞;-8]∪; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • На этом уроке мы продолжим решение рациональных неравенств методом интервалов для более сложных неравенств. Рассмотрим решение дробно-линейных и дробно-квадратичных неравенств и сопутствующие задачи.

    Теперь возвращаемся к неравенству

    Рассмотрим некоторые сопутствующие задачи.

    Найти наименьшее решение неравенства.

    Найти число натуральных решений неравенства

    Найти длину интервалов, составляющих множество решений неравенства.

    2. Портал Естественных Наук ().

    3. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

    5. Центр образования «Технология обучения» ().

    6. Раздел College.ru по математике ().

    1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 28(б,в); 29(б,в); 35(а,б); 37(б,в); 38(а).

    Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

    1. Рассмотрим, например, такое неравенство

    Метод интервалов позволяет решить его за пару минут.

    В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

    Метод интервалов основан на следующем свойстве дробно-рациональной функции.

    Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

    Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

    Где и - корни квадратного уравнения .

    Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

    Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

    Эти точки разбивают ось на промежутков.

    Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

    И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
    . Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

    Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

    Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

    При левая часть неравенства отрицательна.

    И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

    Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

    Ответ: .

    Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

    Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

    Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

    (в левой части - дробно-рациональная функция, в правой - нуль).

    Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
    Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
    Остается только выяснить ее знак на каждом промежутке.
    Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

    Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

    2. Рассмотрим еще одно неравенство.

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

    Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

    При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

    При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

    При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

    Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

    Ответ: .

    Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

    Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

    3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

    Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

    Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

    Ответ: .

    В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

    4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

    Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

    И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

    Которое легко решается методом интервалов.

    Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

    5 . Рассмотрим еще одно неравенство, на вид совсем простое:

    Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

    Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

    И после этого - применим метод интервалов .

    Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

    1. Рассмотрим, например, такое неравенство

    Метод интервалов позволяет решить его за пару минут.

    В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

    Метод интервалов основан на следующем свойстве дробно-рациональной функции.

    Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

    Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

    Где и - корни квадратного уравнения .

    Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

    Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

    Эти точки разбивают ось на промежутков.

    Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

    И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
    . Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

    Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

    Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

    При левая часть неравенства отрицательна.

    И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

    Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

    Ответ: .

    Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

    Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

    Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

    (в левой части - дробно-рациональная функция, в правой - нуль).

    Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
    Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
    Остается только выяснить ее знак на каждом промежутке.
    Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

    Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

    2. Рассмотрим еще одно неравенство.

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

    Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

    При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

    При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

    При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

    Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

    Ответ: .

    Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

    Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

    3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

    Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

    Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

    Ответ: .

    В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

    4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

    Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

    И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

    Которое легко решается методом интервалов.

    Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

    5 . Рассмотрим еще одно неравенство, на вид совсем простое:

    Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

    Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

    Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

    И после этого - применим метод интервалов .

    Загрузка...