Про наши гаджеты. Понятные инструкции для всех

Термоядерное оружие принцип действия. Как действует водородная бомба и каковы последствия взрыва? Инфографика. Отрывок, характеризующий Чистое термоядерное оружие

В мире существует немалое количество различных политических клубов. Большая, теперь уже, семерка, Большая двадцатка, БРИКС, ШОС, НАТО, Евросоюз, в какой-то степени. Однако ни один из этих клубов не может похвастаться уникальной функцией – способностью уничтожить мир таким, каким мы его знаем. Подобными возможностями обладает «ядерный клуб».

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • Россия;
  • Великобритания;
  • Франция;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» — понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния - в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

Термоя́дерное ору́жие (оно же Водородная бомба) - тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия (тяжёлого водорода)), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (При этом, используемый в водородной бомбе уран-238, распадается под действием быстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность.) позволяет намного (до пяти раз) повысить общую мощность взрыва, но значительно (в 5-10 раз) увеличивает количество радиоактивных осадков.

Схема Теллера-Улама.

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6Li - единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

Контейнер с термоядерным горючим - основной элемент бомбы. Он изготовлен из урана-238 - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Может быть выполнен из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее - дейтерид лития-6 - и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формы второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до температур, близких к минимальным для начала реакции. Плутониевый стержень переходит в надкритическое состояние, и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с литием-6, в результате чего получается тритий, который взаимодействует с дейтерием.


A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Инициатора взрыва (триггера). Подобный тип оружия не создаёт долговременного радиоактивного заражения, ввиду отсутствия в нём распадающихся веществ. В настоящее время считается теоретически, безусловно, возможным, но пути практической реализации не ясны.

Концепция

В современном термоядерном оружии, условия, необходимые для начала реакции ядерного синтеза , создаются путём детонации триггера - небольшого плутониевого ядерного заряда. Взрыв триггера создает высокую температуру и давление, необходимые для начала термоядерной реакции в дейтериде лития. При этом, основная часть долговременного радиоактивного заражения при термоядерном взрыве обеспечивается за счет радиоактивных веществ в триггере.

Однако, условия для начала термоядерной реакции возможно создать и без применения ядерного триггера. Такие условия создаются в лабораторных экспериментах и экспериментальных термоядерных реакторах. Теоретически, возможно создать термоядерное оружие, в котором реакция будет инициироваться без использования триггерного заряда - «чистое термоядерное» оружие.

Такое оружие будет иметь следующие преимущества:

Нейтронный вариант чистого термоядерного оружия

Основным поражающим фактором в чисто термоядерном устройстве может стать мощный выброс нейтронного излучения Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]] , а не тепловая вспышка или ударная волна[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]] . Таким образом, сопутствующий ущерб от подрыва такого оружия может быть лимитирован. С другой стороны, это делает чисто термоядерное оружие не лучшим средством для тех ситуаций, когда необходимо поражение прочных сооружений, не содержащих биологической материи или электронных устройств (например, мостов).

Недостатки нейтронного варианта чистого термоядерного оружия те же, что и любого нейтронного оружия :

  • Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности , невелика.
  • Взаимодействием нейтронов с конструкционными и биологическими материалами приводит к появлению наведённой радиоактивности , то есть оружие не является полностью «чистым».
  • Бронетехника , начиная с 1960-х годов, разрабатывается с учётом возможности применения нейтронного оружия. Были разработаны новые типы брони, которая уже способна защитить технику и её экипаж от нейтронного излучения. Для этой цели в броню добавляются листы с высоким содержанием бора , являющегося хорошим поглотителем нейтронов, а в броневую сталь добавляется обеднённый уран . Кроме того, состав брони подбирается так, чтобы она не содержала элементов, дающих под действием нейтронного облучения сильную наведённую радиоактивность. Таким образом, современная бронетехника чрезвычайно устойчива и к нейтронному оружию.

Возможные пути решения

Различные пути решения проблемы чистого термоядерного оружия рассматривались непрерывно с 1992 года, но в настоящее время не дали позитивного результата. Главной проблемой является значительная сложность создания условий начала термоядерной реакции. В лабораторных экспериментах и термоядерных реакторах, такие условия создаются крупногабаритными установками, к тому же весьма энергоемкими. В настоящее время не представляется возможным создание пригодного для использования в боевых условиях термоядерного оружия, основанного, например, на лазерном поджиге реакции , - требуемые для этого лазеры имеют огромные размеры и потребляют значительное количество энергии.

Существуют несколько теоретически возможных путей решения проблемы:

Чистое термоядерное оружие на ударно-волновом излучателе

Представляется теоретически возможным создание относительно компактного чисто термоядерного оружия на основе ударно-волнового излучателя . При этом, для запуска термоядерной реакции используется импульс электромагнитного излучения радиочастотного диапазона.

Согласно теоретическим расчетам, чистое термоядерное устройство на ударно-волновом излучателе будет иметь тротиловый эквивалент примерно сопоставимый с его собственной массой, или даже меньший. Таким образом, как взрывное устройство оно будет совершенно неэффективно. Однако, большая часть (до 80%) энергии при этом выделится в виде нейтронного потока, способного поражать неприятеля на расстоянии в сотни метров от эпицентра. Такое оружие, фактически, будет чистым нейтронным оружием - не оставляющим радиоактивного заражения и практически не создающим сопутствующего ущерба.

Напишите отзыв о статье "Чистое термоядерное оружие"

Примечания

Ссылки

Отрывок, характеризующий Чистое термоядерное оружие

А также, несмотря на то, что в то время Литва уже была под пятой «коричневой чумы», она всё же ещё каким-то образом сохраняла свой независимый и воинственный дух, который не успели вышибить из неё даже самые ярые служители коммунизма... И это притягивало Серёгиных даже больше, чем красота местной природы или гостеприимство людей. Вот они и решили остаться «на время»… что получилось – навсегда… Это был уже 1942 год. И Серёгины с сожалением наблюдали, как «коричневый» осьминог национал-социализма всё крепче и крепче сжимал своими щупальцами страну, которая им так полюбилась... Перейдя линию фронта, они надеялись, что из Литвы смогут добраться до Франции. Но и при «коричневой чуме» дверь в «большой мир» для Серёгиных (и, естественно, для моего папы) оказалась закрытой и на этот раз навсегда… Но жизнь продолжалась... И Серёгины начали понемногу устраиваться на своём новом месте пребывания. Им заново приходилось искать работу, чтобы иметь какие-то средства для существования. Но сделать это оказалось не так уж сложно – желающим работать в трудолюбивой Литве всегда находилось место. Поэтому, очень скоро жизнь потекла по привычному им руслу и казалось – снова всё было спокойно и хорошо...
Мой папа начал «временно» ходить в русскую школу (русские и польские школы в Литве не являлись редкостью), которая ему очень понравилась и он категорически не хотел её бросать, потому что постоянные скитания и смена школ влияла на его учёбу и, что ещё важнее – не позволяла завести настоящих друзей, без которых любому нормальному мальчишке очень тяжело было существовать. Мой дедушка нашёл неплохую работу и имел возможность по выходным хоть как-то «отводить душу» в своём обожаемом окружном лесу.

А моя бабушка в то время имела на руках своего маленького новорождённого сынишку и мечтала хотя бы короткое время никуда не двигаться, так как физически чувствовала себя не слишком хорошо и была так же, как и вся её семья, уставшей от постоянных скитаний. Незаметно прошло несколько лет. Война давно кончилась, и жизнь становилась более нормальной во всех отношениях. Мой папа учился всё время на отлично и учителя порочили ему золотую медаль (которую он и получил, окончив ту же самую школу).
Моя бабушка спокойно растила своего маленького сына, а дедушка наконец-то обрёл свою давнишнюю мечту – возможность каждый день «с головой окунаться» в так полюбившийся ему алитуский лес.
Таким образом, все были более или менее счастливы и пока что никому не хотелось покидать этот поистине «божий уголок» и опять пускаться странствовать по большим дорогам. Они решили дать возможность папе закончить так полюбившуюся ему школу, а маленькому бабушкиному сыну Валерию дать возможность как можно больше подрасти, чтобы было легче пускаться в длинное путешествие.
Но незаметно бежали дни, проходили месяцы, заменяясь годами, а Серёгины всё ещё жили на том же самом месте, как бы позабыв о всех своих обещаниях, что, конечно же, не было правдой, а просто помогало свыкнутся с мыслью, что возможно им не удастся выполнить данное княжне Елене слово уже никогда... Все Сибирские ужасы были далеко позади, жизнь стала каждодневно привычной, и Серёгиным иногда казалось, что этого возможно и не было никогда, как будто оно приснилось в каком-то давно забытом, кошмарном сне...

Василий рос и мужал, становясь красивым молодым человеком, и его приёмной матери уже всё чаще казалось, что это её родной сын, так как она по-настоящему очень его любила и, как говорится, не чаяла в нём души. Мой папа звал её матерью, так как правды о своём рождении он пока ещё (по общему договору) не знал, и в ответ любил её так же сильно, как любил бы свою настоящую мать. Это касалось также и дедушки, которого он звал своим отцом, и также искренне, от всей души любил.
Так всё вроде понемногу налаживалось и только иногда проскальзывающие разговоры о далёкой Франции становились всё реже и реже, пока в один прекрасный день не прекратились совсем. Надежды добраться туда никакой не было, и Серёгины видимо решили, что будет лучше, если эту рану никто не станет больше бередить...
Мой папа в то время уже закончил школу, как ему и пророчили – с золотой медалью и поступил заочно в литературный институт. Чтобы помочь семье, он работал в газете «Известия» журналистом, а в свободное от работы время начинал писать пьесы для Русского драматического театра в Литве.

Всё вроде бы было хорошо, кроме одной, весьма болезненной проблемы – так как папа был великолепным оратором (на что у него и вправду, уже по моей памяти, был очень большой талант!), то его не оставлял в покое комитет комсомола нашего городка, желая заполучить его своим секретарём. Папа противился изо всех сил, так как (даже не зная о своём прошлом, о котором Серёгины пока решили ему не говорить) он всей душой ненавидел революцию и коммунизм, со всеми вытекающими из этих «учений» последствиями, и никаких «симпатий» к оным не питал... В школе он, естественно, был пионером и комсомольцем, так как без этого невозможно было в те времена мечтать о поступлении в какой-либо институт, но дальше этого он категорически идти не хотел. А также, был ещё один факт, который приводил папу в настоящий ужас – это участие в карательных экспедициях на, так называемых, «лесных братьев», которые были не кем-то иным, как просто такими же молодыми, как папа, парнями «раскулаченных» родителей, которые прятались в лесах, чтобы не быть увезёнными в далёкую и сильно их пугавшую Сибирь.
За несколько лет после пришествия Советской власти, в Литве не осталось семьи, из которой не был бы увезён в Сибирь хотя бы один человек, а очень часто увозилась и вся семья.
Литва была маленькой, но очень богатой страной, с великолепным хозяйством и огромными фермами, хозяева которых в советские времена стали называться «кулаками», и та же советская власть стала их очень активно «раскулачивать»... И вот именно для этих «карательных экспедиций» отбирались лучшие комсомольцы, что бы показать остальным «заразительный пример»... Это были друзья и знакомые тех же «лесных братьев», которые вместе ходили в одни и те же школы, вместе играли, вместе ходили с девчонками на танцы... И вот теперь, по чьему-то сумасшедшему приказу, вдруг почему-то стали врагами и должны были друг друга истреблять...
После двух таких походов, в одном из которых из двадцати ушедших ребят вернулись двое (и папа оказался одним из этих двоих), он до полусмерти напился и на следующий день написал заявление, в котором категорически отказывался от дальнейшего участия в любых подобного рода «мероприятиях». Первой, последовавшей после такого заявления «приятностью» оказалась потеря работы, которая в то время была ему «позарез» нужна. Но так как папа был по-настоящему талантливым журналистом, ему сразу же предложила работу другая газета – «Каунасская Правда» – из соседнего городка. Но долго задержаться там, к сожалению, тоже не пришлось, по такой простой причине, как коротенький звонок «сверху»... который вмиг лишил папу только что полученной им новой работы. И папа в очередной раз был вежливо выпровожен за дверь. Так началась его долголетняя война за свободу своей личности, которую прекрасно помнила уже даже и я.

Характерной особенностью американской внешней политики с приходом в Белый дом Джорджа Буша-младшего (уже во время первого срока его президентства) стал резкий крен в сторону использования силовых методов для обеспечения национальной безопасности и национальных интересов США, практически при полном игнорировании роли ООН и мирового общественного мнения. Достаточно ярким подтверждением этого явилось принятие администрацией Соединенных Штатов так называемой "превентивной военной доктрины", предусматривающей возможность проведения упреждающих военных акций по сугубо субъективному обоснованию их необходимости. В эту доктрину вписывается и силовая модель "контрраспространения", допускающая физическое разрушение ядерной инфраструктуры подозрительного, с точки зрения Вашингтона, государства, которая может быть использована для создания ЯО.

ПРОНИКАЮЩИЕ БОЕГОЛОВКИ

По свидетельству сенаторов-демократов Карла Левина и Джека Рида, "вступив в должность президента США, Буш отказался от Договора по противоракетной обороне. Он оказал давление на Конгресс, чтобы утвердить меры и программы, снижающие порог применения ядерного оружия. Московский Договор об ограничении ядерных потенциалов станет началом и концом инициатив администрации Буша по контролю над вооружениями. Для этой администрации деятельность после окончания холодной войны заключается в том, чтобы опираться на ядерное оружие и уходить от контроля над вооружениями".

В представленном Конгрессу в январе 2002 года "Обзоре ядерной политики" (Nuclear Posture Review; далее для краткости "Ядерный обзор") отражено стремление администрации нивелировать различие между применением ЯО малой мощности и оружия обычного назначения при проведении боевых операций на ТВД. В разделе "Поражение прочных глубоко заглубленных целей" высказано требование о необходимости принятия на вооружение ударостойкой проникающей в грунт на большую глубину ядерной боеголовки малой мощности (до 5 кт). При этом подразумевается, что при использовании такой боеголовки не произойдет выброса радиоактивного заражения на поверхность, а прочные командные бункеры, в том числе и хранилища ОМУ, находящиеся на глубине до 300 м, будут уничтожены. Для реализации этого требования была принята программа разработки "ударостойкого ядерного земного проникателя" (Robust Nuclear Earth Penetrator - RNEP, далее в русской транскрипции - РНЕП).

Однако широкая дискуссия как в американских СМИ, так и на страницах научной периодики показала полную несостоятельность данной программы.

Во-первых, по самым оптимистическим прогнозам, вряд ли удастся добиться проникания боеголовки в грунт на глубину свыше 30 м. Взрыв 5-килотонной боеголовки на такой глубине будет мало чем отличаться от поверхностного взрыва и, следовательно, приведет к губительному радиоактивному заражению поверхности.

Во-вторых, для поражения сильно защищенных бункеров на глубинах порядка 300 м необходима мощность боеголовки не менее 100 кт. И даже при этом совершенно не гарантируется уничтожение химических и биологических агентов ОМУ, которые могут прорваться на поверхность, усугубив эффект заражения. Тем не менее администрация Буша продолжает настаивать на продолжении программы РНЕП, определив в качестве носителя "ядерного проникателя" стратегический бомбардировщик В-2А.

По решению Конгресса в 2000 году в структуре Министерства энергетики было создано ведомство, названное "Администрация национальной ядерной безопасности" (Nation Nuclear Security Administration - NNSA, далее в русской транскрипции ННСА), которая, в тесном взаимодействии с Пентагоном и по его заданиям, осуществляет руководство всеми военными ядерными программами, В ее ведении находятся и все три национальные ядерные оружейные лаборатории - Лос-Аламосская, Ливерморская и Сандийская. На 2006 финансовый год, учитывая неясность концепции РНЕП даже для Минобороны, Конгресс урезал ассигнования на программу до 4 млн. долларов. Однако администрация Буша планирует запросить на нее в 2007 финансовом году 14 млн. долларов. В целом же для обеспечения деятельности ННСА непосредственно в области ЯО в 2006 финансовом году Белый дом требует 6,63 млрд. долларов.

Следует обратить внимание на такой факт. Поначалу в ННСА имелся Консультативный комитет независимых ученых и экспертов в области ЯО. Однако он был распущен перед проведением секретного совещания якобы по ЯО малой мощности - "мини-ньюкам" - разрушителям бункеров на базе Стратегического командования Оффут (штат Небраска) в августе 2003 года. Тем самым ННСА де-факто потеряла свой полунезависимый статус и стала строго засекреченной руководящей структурой ядерного оборонного комплекса США. Нужно также отметить, что на указанное секретное совещание не были допущены даже представители Конгресса.

Между тем, по мнению ряда специалистов, работы по программе РНЕП вовсе не заслуживают столь высокого уровня секретности. Как отмечал физик-ядерщик Сидней Дрелл из Ливерморской национальной лаборатории: "Это вопрос не испытания или развития новых образцов оружия, а принятия решения о возможности скомпоновать конструкцию таким образом, чтобы она могла глубоко проникнуть без разрушения самой себя преждевременным взрывом".

Таким образом, "под сурдинку" мини-ньюков может проводиться разработка принципиально нового поколения ядерного оружия. Программа РНЕП также позволила администрации США оказать давление на Конгресс и добиться отмены в мае 2004 года поправки Спратта-Фурсе (принята в 1994 году), запрещавшей финансирование исследований и разработок по ЯО мощностью до 5 кт.

Об акценте на снижение порога использования ядерного оружия, прежде всего на ТВД, свидетельствуют и разрабатываемые концептуальные документы по условиям применения ЯО в возможных боевых операциях Объединенных вооруженных сил США.

ЧИСТО ТЕРМОЯДЕРНОЕ

Стремление администрации Буша снизить порог применения ядерного оружия и тем самым нивелировать различие между ЯО малой мощности и оружием общего назначения, по мнению многих американских ученых и экспертов, может воплотиться (если уже не воплотилось) в решение о разработке принципиально новых ядерных боеприпасов четвертого поколения - чисто термоядерных.

Напомню, что первое поколение ЯО - атомное, использующее только деление тяжелых ядер урана-235 и плутония-239.

Второе поколение - термоядерное ЯО, в котором предусмотрена как реакция деления тяжелых ядер в качестве детонатора, так и реакция термоядерного синтеза изотопов водорода - дейтерия и трития. При этом повышению удельной мощности способствует реакция деления урана-238 под действием высокоэнергетических нейтронов, возникающих при реакции термоядерного синтеза.

Третье поколение - это рентгеновский лазер. Его действие основано на накачке энергией ядерного взрыва рабочего тела с последующим излучением им рентгеновских лучей. Данное оружие не нашло военного применения и использовалось в качестве блефа администрацией президента Рейгана в рамках "Стратегической оборонной инициативы" (СОИ) как оружие противоракетной обороны.

Таким образом, во всех трех поколениях ЯО непременно присутствует реакция деления тяжелых ядер, сопровождающаяся долговременным радиоактивным заражением окружающей среды. Это обстоятельство и является до сих пор гарантом высокого порога для применения ядерного оружия даже малой и сверхмалой мощности.

Когда же идет речь о ЯО четвертого поколения, то имеется в виду чисто термоядерное оружие, реакция синтеза в котором инициируется альтернативным реакции деления источником энергии. Он должен быть вполне пригоден для осуществления реакции термоядерного синтеза и достаточно компактен для размещения в соответствующей боеголовке.

В американских специализированных научных изданиях и некоторых печатных источниках неправительственных организаций, занимающихся вопросами контроля над вооружениями, проблеме ЯО четвертого поколения придается значительное внимание. В то же время официальные представители администрации категорически отрицают как наличие решения о создании ЯО четвертого поколения, так и то, что национальные ядерные лаборатории занимаются его разработкой.

Однако некоторые независимые эксперты (правда, без каких-либо конкретных ссылок), определенно утверждают, что такие работы ядерными лабораториями ведутся. Так, например, директор "Ядерных наблюдений из Нью-Мексико" (Nucewatch of New Mexico) Джей Коуглин утверждает: "Существует три ядерные лаборатории, и все три имеют программы по термоядерному синтезу - одинаковые или разные. Такой интерес само собой разумеющийся┘".

Кратко, но по основным моментам полно, вопрос о чисто термоядерном оружии освещается в статье Джеймса Петокоукиса (James M. Pethokoukis. H-bomb Baby boom? The US News and World Report, October 13, 2003.): "┘активисты и исследователи говорят, что на длительный период зеленый свет для исследования могла также дать поддержка полностью нового мини-ньюка, так называемая чисто термоядерная бомба". Ему вторит Джей Коуглан, эксперт из Нью-Мексико: "Потворствуя мини-ньюкам, вы... открываете дверь к созданию даже более продвинутых мини-ньюков, таких, как чисто термоядерное оружие".

Чисто термоядерные бомбы могли бы быть более компактными и мощными, чем сегодняшние мини-ньюки, без выпадения радиоактивных осадков. Существующие конструкции получают основную мощность от синтеза водородных атомов, но для этого требуется могучая спичка - атомный взрыв, - чтобы зажечь процесс. А реакция деления означает осадки. Чистое термоядерное оружие испустило бы изрядное количество мгновенной убийственной радиации, но в виде короткоживущих нейтронов. "Вы могли бы вводить ваши воинские части через 48 часов, потому что не будет никаких радиоактивных осадков", - говорит Арджун Махиджани из Института исследований энергии и окружающей среды в Парке Такома, Mериленд. Это - военное преимущество, но это могло бы снизить порог использования этого оружия.

По словам Андрэ Гаспонера из Независимого научно-исследовательского института в Женеве, реакция деления требует критической массы плутония или урана; для чисто термоядерного оружия не существует критической массы, и потому "оно может быть, сколь угодно малым по вашему желанию, виртуально - атомными пулями". Однако будет дебютировать это ЯО, полагает эксперт, как ультрамощные боеголовки крылатых ракет.

ТЕХНИЧЕСКИЕ ПРЕГРАДЫ

Наибольшая техническая преграда - "поджог" реакции синтеза без реакции деления. Размером со стадион и стоимостью в 3,3 млрд. долларов Национальная лазерная установка (NIF - National Ignition Facility) в Ливерморской национальной лаборатории им. Лоуренса в Калифорнии исследует один из подходов. Начиная с 2008 года NIF будет обстреливать 192 лазерными лучами капсулы изотопов водорода размером с горошину, сжимая и нагревая их до 100 млн. градусов, чтобы зажечь реакцию синтеза. Официальные лица NIF указывают, что они не разрабатывают инициируемые лазером бомбы. "Нет ни одного такого аспекта, на который вы могли бы указать, - говорит руководитель NIF Джордж Миллер. - Это невыполнимо, и мы не планируем делать это".

Роль NIF состоит в том, чтобы изучить возможность создания гражданских электростанций на основе синтеза и проводить базовые исследование, способствующие оценке готовности существующего ядерного арсенала. Но то, что NIF открывает возможность осуществления реакции синтеза без реакции деления, может оказаться полезным для разработчиков оружия, заявляют некоторые эксперты. Например, Глен Вурден, физик - специалист по синтезу Лос-Аламосской национальной лаборатории: "Лазерный синтез работает очень похоже, как и в оружии".

Ключи к разгадке проблемы способна также добыть Национальная лаборатория Сандия в Нью-Мехико, где "Z-машина" управляет огромным импульсом электрического тока через связку очень тонких проводов. Результат - плазменный взрыв, испускающий пучок рентгеновских лучей, которые могут катализировать реакцию термоядерного синтеза. Некоторые теоретики даже предполагают, что частицы антиматерии послужат в качестве спускового механизма, хотя пока физики создали лишь несколько антиатомов.

Препятствия могли бы растягивать календарный график на десятилетия. Но даже в 1997 году чисто термоядерное оружие казалось достаточно вероятным для Ганса Бете, нобелевского лауреата по физике и ветерана усилий по созданию атомной бомбы. Он настоятельно советовал президенту Клинтону не финансировать подобные исследования. "В наши дни маленькие бомбы начинают вырисовываться в огромные", - говорил Бете.

Принципиально новой установкой для исследований термоядерного синтеза является Magnetized Target Fusion (MTF). Она совместно используется Лос-Аламосской национальной лабораторией и Научно-исследовательской лабораторией ВВС (база ВВС Киртланд, Нью-Мексико). В отличие от обычного токомака и лазерного возбуждения синтеза MTF имеет преимущество в менее дорогостоящей возможности получения термоядерной энергии в промышленных масштабах. В последние годы фокус усилий в исследованиях синтеза, особенно в США, перемещается от научной возможности к экономической практичности. Установка предназначена также для проведения исследований по военным программам.

Таким образом, в США создана мощная материальная основа для успешных исследований проблем термоядерного синтеза по трем разным направлениям, разумеется, не только для промышленного освоения термоядерной энергии, но и для военного применения.

Эта основа закладывалась в период второго срока президентства Клинтона в рамках подготовки к заключению Договора о всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) для обеспечения надежного функционирования ядерного арсенала США в условиях запрещения ядерных испытаний - Программы сопровождения ядерного арсенала.

Уже тогда эксперты Института исследований энергии и окружающей среды отмечали, что официальные планирующие документы по этой программе свидетельствовали: Министерство обороны США намерено поддерживать разработку нового ЯО. С точки зрения рационализма, Пентагону необходимо не только иметь передовые установки, чтобы заинтересовать и удержать ученых, но также предоставить им благоприятные возможности для практической реализации их знаний как творцов средств поражения будущего. Министерство обороны отрицает стремление разрабатывать чисто термоядерное оружие. Но проводимая Пентагоном научно-техническая деятельность может привести к его созданию, несмотря на все опровержения, потому что она на практике именно этому и способствует.

На проведение в США работ по чисто термоядерному оружию указывал в 1999 году академик Михайлов ("Перспективы новых технологий разработки ядерного оружия". "НВО", # 15, 1999). В частности, Михайлов отмечал, что в рамках Программы сопровождения ядерного арсенала "также будут проводиться работы по созданию принципиально новых видов оружия и оценке физических принципов, существенных для проектирования ядерного оружия. Надо полагать, речь идет, по сути, о практически "чистом" термоядерном заряде, резко понижающем психологический барьер применения ядерного оружия, и без долговременного заражения продуктами взрыва".

Характерно, что Министерство обороны США оперативно реагирует на даже, казалось бы, экзотические источники ядерной энергии для их использования в военных целях. Так, например, научные эксперименты по накачке гафния низкоэнергетическим рентгеновским излучением, приведшие к образованию метастабильного атомного изомера - hafnium-178m2, показавшие 60-кратное увеличение энергии последующего гамма-излучения, сразу же были включены в пентагоновский "Перечень военно-критических технологий": "Такая экстраординарная плотность энергии имеет потенциал революционизировать все аспекты ведения военных действий".

ПОНИЖЕНИЕ ПОРОГА

Следует также отметить, что помимо трех ядерных оружейных лабораторий Министерства энергетики, работы в области атомной изомерии в военно-прикладном плане, наряду с термоядерным синтезом, проводит упомянутая Исследовательская лаборатория ВВС в Киртланде.

Как уже подчеркивалось выше, с приходом в Белый дом Джорджа Буша-младшего наметился четкий акцент на снижение порога использования ЯО малой мощности, прежде всего на ТВД. Чисто термоядерное оружие в наибольшей степени соответствует такому стремлению.

Принципиальное преимущество чисто термоядерного боеприпаса перед нынешним поколением термоядерных БП с атомным детонатором - отсутствие долговременного заражения радиоактивными продуктами взрыва последнего. При чисто термоядерном взрыве образуются только инертный газ гелий и поток быстрых нейтронов, вызывающих незначительную наведенную радиацию. К тому же путем использования соответствующих материалов для конструкции корпуса боеприпаса можно снизить выход потока нейтронов в окружающую среду. Основными поражающими факторами такого боеприпаса будут только ударная волна и световое излучение. Что же касается механического поражающего фактора - ударной волны, то он может варьироваться в широчайших пределах от единиц до тысяч и более килограммов тротилового эквивалента, что не грозит человечеству "ядерной зимой" при применении такого термоядерного боеприпаса на высокоточных носителях для нанесения "хирургических ударов" по стратегически значимым целям.

Какие имеются стимулы создания такого термоядерного заряда для США? Это прежде всего интересы повышения эффективности противоракетной обороны - как на ТВД, так и национальной. Особенно теперь, когда выход США из Договора по ПРО более не ограничивает совершенствование систем противоракетной обороны и выбор средств для повышения ее эффективности. Использование чисто термоядерного боеприпаса для поражения вражеских боеголовок даже на малой высоте над своей территорией не приведет к выпадению радиоактивных осадков. Вдобавок такой боеприпас, в зависимости от его тротилового эквивалента, может обладать достаточно широким дистанционным поражающим эффектом.

В случае применения боеголовок с чисто термоядерным зарядом для поражения находящихся примерно в 300 м от поверхности земли и сильно укрепленных бункеров при внедрении боеголовки даже на небольшую глубину нейтронное излучение практически полностью будет поглощено прилегающими к месту взрыва слоями грунта. Но надо иметь в виду, что для уничтожения особо важных и защищенных объектов при реально достижимой глубине проникания боеприпаса требуется мощность взрыва порядка 100 кт и более.

При подводном взрыве чисто термоядерного боеприпаса нейтронное излучение также будет поглощено водными массами - следовательно, такое оружие будет эффективным противолодочным и противокорабельным оружием.

Исключительно адекватно чисто термоядерное оружие вписывается в американскую концепцию "контрраспространения" ОМУ, допускающую физическое разрушение инфраструктуры его производства (имеется в виду прежде всего ЯО враждебных, по мнению США, государств).

Поэтому есть высокая степень вероятности, что в условиях строжайшей секретности работы по созданию чисто термоядерного оружия ведутся в Соединенных Штатах полным ходом. На проведение таких работ указывают и некоторые американские эксперты. Единственной, но критической проблемой здесь является разработка такого компактного импульсного источника энергии, который был бы способен инициировать взрывную термоядерную реакцию синтеза и мог бы быть размещен в соответствующей боеголовке. Однако некоторые предпосылки решения этой проблемы в настоящее время имеются. Особо можно выделить три направления:

Первое - исследования процессов катализа термоядерного синтеза на субатомном уровне с целью возможности снижения его энергетики.

Второе - разработка компактных сверхмощных импульсных источников электромагнитной энергии.

Третье - разработка на базе последних достижений нанотехнологий накопителей электрической энергии, достаточной для "поджога" взрывного термоядерного синтеза.

В частности, относительно первого направления есть информация, что международный коллектив физиков в канадской "Национальной лаборатории физики ядра и элементарных частиц" выполнил эксперимент, который привел к интенсивному синтезу необычных молекул. Они состоят из ядер тяжелых изотопов водорода дейтерия и трития и связанного с ними мю-мезона. Теоретические расчеты показывают, что такие мезомолекулы могут катализировать управляемые термоядерные реакции, протекающие при относительно низких температурах.

Но, возможно, более перспективным окажется второе направление в связи с тем, что уже сконструированы компактные мощные генераторы импульсного электромагнитного излучения (FC-генераторы), способные путем сжатия магнитного потока взрывом обычной взрывчатки производить электрический ток, в 10-1000 раз превышающий ток в разряде типичной молнии. Не исключено, что подобный генератор был использован в американской электромагнитной бомбе (Е-бомбе), взрыв которой 26 марта 2003 года вывел из строя все электронное оборудовании телевизионного центра в Багдаде.

Также возможно, что в связи с бурным развитием нанотехнологий перспективным может оказаться и третье направление разработки компактных источников энергии, достаточной для инициирования взрывной термоядерной реакции. В настоящее время есть данные, что уже имеются конденсаторы с удельной емкостью в 30 киловатт электрической энергии на один килограмм веса. Такие конденсаторы могут быть использованы для накачки лазеров, расположенных в боеголовке, и тем самым инициировать взрывную реакцию синтеза. По имеющейся информации, известная американская фирма "Интел" разрабатывает кремниевые микролазеры для использования при создании принципиально нового поколения микропроцессоров для ЭВМ. Эти кремниевые микролазеры способны усиливать на три порядка выход энергии излучения по сравнению с энергией, затрачиваемой на их накачку. Вполне вероятно, подобные эффекты могут быть получены и на соответствующих макролазерах.

В общем, миллиарды долларов, затрачиваемые самой передовой в технологическом отношении страной на деятельность ядерных оружейных лабораторий, не исключено, рано или поздно приведут к появлению четвертого поколения ЯО - чисто термоядерного. Многие эксперты полагают, что есть определенная степень вероятности появления чисто термоядерного оружия раньше, чем будет освоено промышленное использование термоядерной энергии на экономически приемлемом уровне. История может повториться, как это было с атомным оружием - сначала бомба, а потом энергетика.

Инициатора взрыва (триггера). Подобный тип оружия не создаёт долговременного радиоактивного заражения, ввиду отсутствия в нём распадающихся веществ. В настоящее время считается теоретически, безусловно, возможным, но пути практической реализации не ясны.

Энциклопедичный YouTube

    1 / 1

    МЕЖГАЛАКТИЧЕСКИЕ Нити!!

Субтитры

Концепция

В современном термоядерном оружии, условия, необходимые для начала реакции ядерного синтеза , создаются путём детонации триггера - небольшого плутониевого ядерного заряда. Взрыв триггера создает высокую температуру и давление, необходимые для начала термоядерной реакции в дейтериде лития. При этом, основная часть долговременного радиоактивного заражения при термоядерном взрыве обеспечивается за счет радиоактивных веществ в триггере.

Однако, условия для начала термоядерной реакции возможно создать и без применения ядерного триггера. Такие условия создаются в лабораторных экспериментах и экспериментальных термоядерных реакторах. Теоретически, возможно создать термоядерное оружие, в котором реакция будет инициироваться без использования триггерного заряда - «чистое термоядерное» оружие.

Такое оружие будет иметь следующие преимущества:

Нейтронный вариант чистого термоядерного оружия

Основным поражающим фактором в чисто термоядерном устройстве может стать мощный выброс нейтронного излучения [ ] , а не тепловая вспышка или ударная волна [ ] . Таким образом, сопутствующий ущерб от подрыва такого оружия может быть лимитирован. С другой стороны, это делает чисто термоядерное оружие не лучшим средством для тех ситуаций, когда необходимо поражение прочных сооружений, не содержащих биологической материи или электронных устройств (например, мостов).

Недостатки нейтронного варианта чистого термоядерного оружия те же, что и любого нейтронного оружия :

  • Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности , невелика.
  • Взаимодействием нейтронов с конструкционными и биологическими материалами приводит к появлению наведённой радиоактивности , то есть оружие не является полностью «чистым».
  • Бронетехника , начиная с 1960-х годов, разрабатывается с учётом возможности применения нейтронного оружия. Были разработаны новые типы брони, которая уже способна защитить технику и её экипаж от нейтронного излучения. Для этой цели в броню добавляются листы с высоким содержанием бора , являющегося хорошим поглотителем нейтронов, а в броневую сталь добавляется обеднённый уран . Кроме того, состав брони подбирается так, чтобы она не содержала элементов, дающих под действием нейтронного облучения сильную наведённую радиоактивность. Таким образом, современная бронетехника чрезвычайно устойчива и к нейтронному оружию.

Возможные пути решения

Различные пути решения проблемы чистого термоядерного оружия рассматривались непрерывно с 1992 года, но в настоящее время не дали позитивного результата. Главной проблемой является значительная сложность создания условий начала термоядерной реакции. В лабораторных экспериментах и термоядерных реакторах, такие условия создаются крупногабаритными установками, к тому же весьма энергоемкими. В настоящее время не представляется возможным создание пригодного для использования в боевых условиях термоядерного оружия, основанного, например, на лазерном поджиге реакции , - требуемые для этого лазеры имеют огромные размеры и потребляют значительное количество энергии.

Существуют несколько теоретически возможных путей решения проблемы:

Чистое термоядерное оружие на ударно-волновом излучателе

Представляется теоретически возможным создание относительно компактного чисто термоядерного оружия на основе ударно-волнового излучателя . При этом, для запуска термоядерной реакции используется импульс электромагнитного излучения радиочастотного диапазона.

Согласно теоретическим расчетам, чистое термоядерное устройство на ударно-волновом излучателе будет иметь тротиловый эквивалент примерно сопоставимый с его собственной массой, или даже меньший. Таким образом, как взрывное устройство оно будет совершенно неэффективно. Однако, большая часть (до 80%) энергии при этом выделится в виде нейтронного потока, способного поражать неприятеля на расстоянии в сотни метров от эпицентра. Такое оружие, фактически, будет чистым нейтронным оружием - не оставляющим радиоактивного заражения и практически не создающим сопутствующего ущерба.

Загрузка...